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IMPORTANCE Cannabis use during adolescence is known to increase the risk for
schizophrenia in men. Sex differences in the dynamics of brain maturation during
adolescence may be of particular importance with regard to vulnerability of the male brain to
cannabis exposure.

OBJECTIVE To evaluate whether the association between cannabis use and cortical
maturation in adolescents is moderated by a polygenic risk score for schizophrenia.

DESIGN, SETTING, AND PARTICIPANTS Observation of 3 population-based samples included
initial analysis in 1024 adolescents of both sexes from the Canadian Saguenay Youth Study
(SYS) and follow-up in 426 adolescents of both sexes from the IMAGEN Study from 8
European cities and 504 male youth from the Avon Longitudinal Study of Parents and
Children (ALSPAC) based in England. A total of 1577 participants (aged 12-21 years; 899
[57.0%] male) had (1) information about cannabis use; (2) imaging studies of the brain; and
(3) a polygenic risk score for schizophrenia across 108 genetic loci identified by the
Psychiatric Genomics Consortium. Data analysis was performed from March 1 through
December 31, 2014.

MAIN OUTCOMES AND MEASURES Cortical thickness derived from T1-weighted magnetic
resonance images. Linear regression tests were used to assess the relationships between
cannabis use, cortical thickness, and risk score.

RESULTS Across the 3 samples of 1574 participants, a negative association was observed
between cannabis use in early adolescence and cortical thickness in male participants with a
high polygenic risk score. This observation was not the case for low-risk male participants or
for the low- or high-risk female participants. Thus, in SYS male participants, cannabis use
interacted with risk score vis-à-vis cortical thickness (P = .009); higher scores were
associated with lower thickness only in males who used cannabis. Similarly, in the IMAGEN
male participants, cannabis use interacted with increased risk score vis-à-vis a change in
decreasing cortical thickness from 14.5 to 18.5 years of age (t137 = −2.36; P = .02). Finally, in
the ALSPAC high-risk group of male participants, those who used cannabis most frequently
(�61 occasions) had lower cortical thickness than those who never used cannabis (difference
in cortical thickness, 0.07 [95% CI, 0.01-0.12]; P = .02) and those with light use (<5 occasions)
(difference in cortical thickness, 0.11 [95% CI, 0.03-0.18]; P = .004).

CONCLUSIONS AND RELEVANCE Cannabis use in early adolescence moderates the association
between the genetic risk for schizophrenia and cortical maturation among male individuals.
This finding implicates processes underlying cortical maturation in mediating the link
between cannabis use and liability to schizophrenia.
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C annabis is the most common illicit substance used
across the world, with the 2012 annual prevalence of
cannabis use reaching 3.8% (177.63 million users)

among people aged 15 to 64 years.1 Globally, more than 13
million people were dependent on cannabis in 2010; annual
prevalence of cannabis dependence appears to peak
between 20 and 24 years of age and is higher in males than
females and in high-income countries.2 As with any other
illicit substance, cannabis use emerges during adolescence.
Based on the 2011 European School Survey Project on Alco-
hol and Other Drugs,3 a mean lifetime prevalence of canna-
bis use among high school students aged 15 to 16 years was
17%, with large variations across the 36 participating coun-
tries (eg, 19% in Germany, 25% in the United Kingdom, and
39% in France). The 2014 Monitoring the Future survey4 has
reported a lifetime prevalence of cannabis use of 35.8%
among youth aged 15 to 16 years living in the United States
in 2013. Thus, a large proportion of individuals are exposed
to cannabis during early to middle adolescence, a develop-
mental period characterized by the continuing maturation
of neural circuits.

Adolescence is a period of transition that involves a
large number of age-related changes in physiological pro-
cesses (eg, sex hormones) and social environment (eg, peer-
peer interactions).5,6 Such influences—often in interaction
with genetic variations—shape the neurobiological features
that underly maturation of the adolescent brain, as quanti-
fied in vivo with magnetic resonance imaging (MRI). A num-
ber of large-scale MRI studies of typically developing
adolescents7-12 have identified age-related changes in gray
and white matter volumes, cortical thickness, white-matter
microstructure, and brain response to various stimuli and
cognitive processes. Many of these brain metrics show sex
differences in their trajectories, such as steeper slopes
of age-related increases in white matter and decreases
in (cortical) gray matter in male compared with female
adolescents.13,14 These sex differences in the dynamics of
brain maturation during adolescence may be of particular
importance with regard to vulnerability of the male brain to
external factors, such as cannabis exposure, during this
period of development. In this context, we note previous
observations of an earlier onset of schizophrenia in men
compared with women; the first signs of schizophrenia, the
first positive symptoms, and the first admissions occur 3 to
5 years earlier in men, and the age range of the first sign of
mental disorder is from 15 to 24 years for men (compared
with 20-29 years for women).15 Given the solid epidemio-
logic evidence supporting a link between cannabis exposure
during adolescence and schizophrenia,16 we investigate
whether the use of cannabis during early adolescence (by 16
years of age) is associated with variations in brain matura-
tion as a function of genetic risk for schizophrenia, as
assessed with the recently developed polygenic risk score.17

We address this question in 3 samples of typically develop-
ing youth for whom we have obtained (1) information about
their cannabis use during adolescence; (2) structural
T1-weighted MRI of the brain; and (3) their polygenic risk
score for schizophrenia.17

Methods

Samples and Overall Strategy
The initial analysis was performed in a sample of 1024 ado-
lescents recruited in the context of the Saguenay Youth Study
(SYS).18 This sample comes from the Saguenay Lac-Saint-
Jean region of Quebec, Canada.19 Magnetic resonance imaging
of the brain and information about cannabis use were col-
lected at 1 point in a cross-sectional manner from partici-
pants aged 12 to 18 years.

Follow-up analyses were performed in 2 other population-
based samples. The first replication sample consisted of 504
male youth recruited from the Avon Longitudinal Study of Par-
ents and Children (ALSPAC)20 based in England. The use of can-
nabis was assessed repeatedly throughout adolescence, and
MRIs of the brain were collected at 1 point when the partici-
pants reached 18 to 21 years of age. The second replication
sample consisted of 426 adolescents recruited in 8 European
cities in the context of the IMAGEN Study.21 Magnetic reso-
nance images of the brain and information about cannabis use
were collected when the participants entered the study (time
1; approximately 14.5 years of age) and 4 years later (time 2;
approximately 18.5 years of age). In addition, cannabis use was
assessed in the same participants between the 2 MRI sessions
(at approximately 16 years of age). Characteristics of the study
participants for all 3 samples are summarized in eTable 1 in the
Supplement. Given the known sex differences in brain matu-
ration during adolescence, we performed all analyses (SYS and
IMAGEN samples) for male and female adolescents sepa-
rately; in the ALSPAC sample, MRIs were available in male par-
ticipants only. The institutional review boards of all partici-
pating institutions approved all studies reported herein. The
parents and adolescents provided written informed consent
and assent, respectively. All data were deidentified.

In all samples, we used exposure to cannabis by 16 years
of age as the main independent variable; this choice is consis-
tent with the epidemiologic findings on cannabis use during
adolescence, with the high dynamics of brain development in
early to middle adolescence, and with the previous work on
the association between cannabis use by 16 years of age and
structural properties of the adolescent22 and adult23,24 brains.
In the SYS sample, we classified adolescents as having ever or
never used cannabis based on their answer to a question about
lifetime cannabis use; information about the number of
occasions of cannabis use in their lives was not available. In
the ALSPAC and IMAGEN samples, we were able to address the
latter question using (ordinal) data on the number of occa-
sions of cannabis use by 16 years of age.

We used the mean cortical thickness (across the entire cor-
tical mantle) as the main dependent variable. We believe that
cortical thickness is a useful metric for capturing the cumu-
lative effects of various experiential factors on cortical neu-
robiological features, especially neuropil (ie, dendrites, glial
cells) and capillary densities.25 In addition to the mean thick-
ness, we have related regional variations in the group differ-
ences (users vs nonusers) in thickness across 34 cortical re-
gions to those in the expression of the cannabinoid receptor 1
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gene (CNR1 [NCBI Entrez Gene 1268]) derived from the Allen
Brain Atlas in the same regions.26 This atlas provides postmor-
tem measurements of gene expression obtained in 6 adult
brains (1269 cortical samples were used to calculate an aver-
age for each of the 34 regions). We used CNR1 expression as a
proxy of the cannabinoid type 1 receptor density to evaluate
whether the extent of the relationship between cannabis use
and cortical thickness varies as a function of this receptor’s den-
sity in the cerebral cortex, thus testing for the level of speci-
ficity in this relationship.

Finally, we asked whether the genetic risk for schizo-
phrenia moderates the relationship between cannabis use and
cortical thickness. To answer this question, we used imputa-
tions from genome-wide single-nucleotide polymorphisms
(SNPs) obtained in each of the 3 samples to calculate a poly-
genic risk score/profile from 108 loci identified by the Psychi-
atric Genomics Consortium in a genome-wide comparison of
36 989 patients with schizophrenia and 113 075 controls.17 Risk
scores ranged from −2.45 to 2.06 across the 3 samples, with
greater scores indicating higher genetic risk for schizophre-
nia. Additional details of the study methods are provided in
the eMethods in the Supplement.

Statistical Analysis
All statistical analyses were performed with JMP (version 17
10.0; SAS Institute Inc). Effect sizes were calculated using
R software (version 3.1.2).27 Linear regression was the pri-
mary statistical test used. The Cohen d statistic, Pearson cor-
relation, Spearman correlation, and t tests were also used as
specified in the Results section below and in the eResults in
the Supplement.

Results
SYS Sample
In male adolescents (459 with available data) in the SYS sample,
we observed an interaction between cannabis use (never/
ever) and the risk score on age-adjusted cortical thickness
(t455 = −2.60; P = .009); as shown in Figure 1A, age-adjusted
cortical thickness decreases with the increasing risk score in
cannabis users (R2 = 0.06; P = .002) but not in nonusers
(R2 = 8.4 × 10−5, P = .87). We observed main effects of canna-
bis use (t455 = −2.69; P = .008) but not the risk score (t455 = 0.16;
P = .87). As expected, those who ever used cannabis were older
than those who never used cannabis, but this relationship does
not vary between participants with low and high polygenic
scores (P = .59, logistic regression). Figure 1B shows the dif-
ferences in thickness across risk score deciles and cannabis use
in male adolescents; Figure 1C shows the interaction be-
tween cannabis use and risk score on age-adjusted cortical
thickness in female adolescents. Results of a vertex-based
analysis of the interaction between Schizophrenia Risk Score
and cannabis groups (ever vs never) vis-à-vis cortical thick-
ness are shown in eTable 2 in the Supplement.

The above results are comparable to those obtained when
using sex-specific median values of the risk score to classify
adolescents in the high (ie, above the median) and low (be-

low the median) risk groups. We use this strategy in the
ALSPAC and IMAGEN samples to evaluate the possible ef-
fects of cumulative cannabis frequency, given the small num-
ber of individuals in the different cannabis frequency cells. To
allow a comparison of the 3 samples using this approach, we
have reanalyzed the SYS data using the median-based risk
groups (Figure 2A and eFigure and eResults in the Supple-
ment).

IMAGEN Sample
In the IMAGEN sample of adolescents (145 male and 188 fe-
male participants with available data), we were able to evalu-
ate a relationship between frequency of cannabis use (by 16
years of age) and change in cortical thickness during adoles-
cence (from time 1 [approximately 14.5 years] to time 2
[approximately 18.5 years] adjusted for scanner manufac-
turer). We observed an interaction between cannabis use
(never/ever) and the risk score on the adjusted change in cor-
tical thickness (t137 = −2.36; P = .02). In this model, we also ob-
served main effects of cannabis use (t137 = −2.29; P = .02) and
risk score (t137 = 2.76; P = .007). In female participants, we ob-
served a main effect of risk score (t181 = −2.75; P = .007) but not
of cannabis use (t181 = 0.90; P = .37) or the interaction be-
tween them (t181 = 1.36; P = .18). We were able to evaluate a
relationship between frequency of cannabis use (by 16 years
of age) and change in cortical thickness using the median-
based groups (Figure 2C and eFigure and eResults in the
Supplement).

ALSPAC Sample
In this sample of male youth (295 with available data), we were
able to evaluate again a relationship between the frequency
of cannabis use (by 16 years of age) and age-adjusted cortical
thickness measured from 18 to 21 years of age. First, we found
no difference in cortical thickness between those who never
and those who ever used cannabis, with the latter consisting
of those who reported cannabis use with any frequency, in the
high-risk (P = .78) and in the low-risk (P = .61) groups. Sec-
ond, using the median-split approach (Figure 2C), we ob-
served a difference in the high-risk group in age-adjusted cor-
tical thickness (in arbitrary units) between those who never
used cannabis and the most frequent users (ie, ≥61 occa-
sions), with a difference of 0.07 (95% CI, 0.01-0.12; P = .02; Co-
hen d = 0.8). We also observed a similar difference between
light users (<5 occasions) and the most frequent users (differ-
ence, 0.11 [95% CI, 0.03-0.18]; P = .004; d = 1.9). No such dif-
ferences were observed in the low-risk group.

Relationship Between Cannabis-Related Differences
in Thickness and CNR1 Expression
Expression of CNR1 varies across the 34 cortical regions seg-
mented by FreeSurfer28; as shown in Figure 3A, these
regional variations are consistent across the 6 donors for whom
expression data were available (left hemisphere). Figure 3B de-
picts group differences between those who never and ever used
cannabis (SYS male participants) as a function of CNR1 expres-
sion (eTable 3 in the Supplement). We observed high rank-
order correlations between the group difference in cortical
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Figure 1. Age-Adjusted Cortical Thickness and Polygenic Risk Score for Schizophrenia in the Saguenay Youth Study (SYS) Participants
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The SYS participants are stratified by cannabis use as never and ever having
used. A, Among SYS male participants, 317 had never and 142 had ever used
cannabis. Regression lines for those who never and ever used are plotted with
shaded 95% CIs. Median risk score is marked with the dotted vertical line. Risk
scores range from −1.86 to 1.53, with greater scores indicating higher risk.
B, Dot plots show age-adjusted cortical thickness across risk score deciles of
male adolescents who never and ever used cannabis. Mean thickness values are
marked with solid bars. The Schizophrenia Working Group of the Psychiatric

Genomics Consortium17 found that the top decile (based on the top 108 loci)
contained about 3 times more cases of schizophrenia than the bottom decile
(mean odds ratio across 39 samples, 3.21). C, Among SYS female participants,
319 had never and 171 had ever used cannabis. A weak albeit significant
relationship between cortical thickness and risk score is seen with cannabis
exposure. Lines and risk scores are described in part A. Cortical thickness is
presented in arbitrary units (residuals).
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Figure 2. Dot Plots of Mean Cortical Thickness for Different Groups of Male Cannabis Users at High and Low Risk
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cortical thickness is presented in male participants who ever and never used
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Children; SYS, Saguenay Youth Study. Cortical thickness is presented in arbitrary
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a P < .005, t test.
b P < .05, t test.
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Figure 3. Regional Variations in Group Differences in Cortical Thickness and CNR1 Expression
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CNR1 ExpressionA

Frontal lobe

Occipital lobe

Parietal lobe

Temporal lobe

Frontal lobe

Occipital lobe

Parietal lobe

Temporal lobe

A. Median values of CNR1 expression (across 6 donors) are plotted as bars for
the 34 cortical regions (left hemisphere); regions are ordered according to the
expression values (lowest [left] to highest [right]). Median values obtained in
each donor (median of all samples available for a given cortical region) are
indicated by individual points. Lines connect expression values belonging to the
same donor; solid line connects values contributed by a donor with relatively
low (flat) expression values. (donor ID:H0351.2002; 39-year old male).
B. Group differences in age-adjusted cortical thickness between male

adolescent participants who never and ever used cannabis as a function of CNR1
expression in groups at low (left) and high (right) risk from the Saguenay Youth
Study (SYS). Regression lines are plotted with shaded 95% CIs; correlation
statistics are provided. All corresponding (mean) values are provided in eTable 3
in the Supplement. The 5 regions with highest CNR1 expression are identified by
their rank; corresponding names are provided in the x-axis of part A. Bankssts
indicates banks of superior temporal sulcus.
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thickness and CNR1 expression across the 34 regions in the
low-risk (Figure 3B, left; ρ = −0.64; P = 7.6 × 10−5) and high-
risk (Figure 3B, right; ρ = −0.48; P = .005) male SYS partici-
pants. Thus, the largest group differences between those who
never and ever used cannabis were found in regions that
showed high CNR1 expression (eg, entorhinal and anterior cin-
gulate cortex).

Discussion
Across 3 population-based samples of typically developing
youth, we observed a negative association between cannabis
use in early adolescence and cortical thickness in male ado-
lescents with a high genetic risk for schizophrenia, as indi-
cated by their risk profiles across 108 genetic loci identified by
the Psychiatric Genomics Consortium in a large genome-
wide comparison of patients with schizophrenia and control
individuals.17 This association appears to vary with the cumu-
lative frequency of cannabis use before 16 years of age, as evalu-
ated in two of the samples. The association may emerge dur-
ing adolescence, as evidenced by the longitudinal MRI data
obtained in one of the samples. Male participants with low poly-
genic risk scores and all female participants did not present
similar associations in our data sets.

Observational studies such as ours cannot attribute cau-
sality to the observed relationships. Even the longitudinal de-
sign does not rule out the possibility that individuals with a
particular developmental trajectory may be more likely to ex-
periment with cannabis rather than the cannabis exposure af-
fecting the trajectory. Although genetic approaches, such as
mendelian randomization,29 may address this issue to some
extent, only studies in model systems allow one to assess the
true consequences of cannabis exposure in organisms ran-
domized experimentally into different treatments.

Unlike the SYS and IMAGEN samples, the high-risk male
participants in the ALSPAC sample do not show a difference
in cortical thickness between those who never and ever used
cannabis; only the high-frequency users do. We can only specu-
late that, with a given sample size, the association between less-
frequent cannabis use and cortical thickness is less robust and,
therefore, sensitive to other (confounding) effects that may
accumulate with age; the ALSPAC sample is almost 5 years older
than the SYS sample.

Adolescence is a period of vulnerability with regard to the
emergence of psychotic disorders,30 perhaps especially in
boys.15 Cannabis use during adolescence may be a contribut-
ing factor; high odds ratios were found for schizophrenia in a
35-year prospective study of men16 when the investigators com-
pared frequent cannabis users (>50 occasions by those aged
18-19 years) with nonusers. Our findings suggest that canna-
bis use might interfere with the maturation of the cerebral cor-
tex in male adolescents at high risk for schizophrenia by vir-
tue of their polygenic risk score. The overall volume of cortical
gray matter and cortical thickness decrease with age in typi-
cally developing male adolescents.13,14 Our longitudinal find-
ings suggest that cannabis exposure might accelerate such pro-
cesses, including cortical thinning, in male adolescents with

a high polygenic risk score. A profound thinning of cortical gray
matter was observed during adolescence in patients with child-
hood-onset schizophrenia (onset of symptoms by 12 years of
age)31,32 and, to a much lesser extent, in their nonpsychotic
siblings.33 Patients with childhood-onset schizophrenia have
higher polygenic risk scores for schizophrenia than their
siblings.34 Several studies suggest that associations between
cannabis use and various outcomes may be particularly pro-
nounced during early (<16 years) adolescence.35-38 Follow-up
observations of the adolescents in the SYS and IMAGEN
samples will allow us to evaluate whether this association ap-
plies for those who initiate the use of cannabis during late
adolescence.

What might underlie cannabis-related thinning of cere-
bral cortex in male adolescents? In general, the following 2
processes may play a key role in shaping cortical thickness
during male adolescence: (1) experience-driven plasticity
and related growth of neuropil, which increases cortical
thickness over time; and (2) testosterone-induced restruc-
turing of neuropil, which decreases cortical thickness over
time.

The first process, namely, experience-related plasticity, has
been shown to drive changes in brain structure, as measured
with MRI.39,40 Cannabis may interfere with this process at phar-
macologic and psychosocial levels. The former possibility is
supported by the role of cannabinoid type 1 receptors in long-
term potentiation41-43 and in various neurotrophic events.44

Chronic exposure to cannabis is associated with lower plasma
levels of neurotrophins, such as brain-derived neurotrophic
factor45 and nerve growth factor.46 The latter possibility is sup-
ported by studies suggesting that cannabis use during adoles-
cence is associated with a number of psychosocial phenom-
ena that may limit the richness of educational (eg, dropping
out of high school47-49) and extracurricural (eg, lower engage-
ment in sports50) experiences during this period of develop-
ment. These pharmacologic and psychosocial pathways to-
gether may attenuate over time experience-related increases
in cortical thickness during adolescence.

The second process, namely, testosterone-driven varia-
tions in cortical gray matter, has been demonstrated in a
number of MRI studies of typically developing male
adolescents.13,51,52 Using a functional polymorphism in the an-
drogen-receptor gene, we showed that testosterone-related de-
creases in cortical gray matter during male adolescence are,
at least in part, mediated by the androgen receptor.13 Which
cellular compartments contribute to this phenomenon re-
mains unclear; for example, testosterone may influence spine
density53 or the diameter of intracortical axons.54,55 Interin-
dividual variations in plasma levels of testosterone during early
adolescence predict cannabis use in late adolescence and can-
nabis dependence in young adulthood.56 Rising levels of tes-
tosterone during male adolescence and the associated high dy-
namics in the neurobiological features underlying cortical
maturation may represent a risk factor with regard to other ex-
ternal (eg, cannabis) and/or internal (eg, genetic risk) pertur-
bations. Furthermore, limited evidence supports the pos-
sible effects of testosterone on potentiating the action of
cannabinoid type 1 receptor agonists on presynaptic inhibi-
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tion of excitatory inputs in vitro57 and on transcriptional up-
regulation of the CNR1 gene.58,59

In this report, the polygenic risk score for schizophrenia
calculated with the genome-wide significant SNPs (P < 5 × 10−8)
showed an association with cortical thickness. This associa-
tion was not in evidence when we calculated the score with
the 24 727 nominally significant SNPs (P < .05) (eTable 4 in the
Supplement). Nevertheless, the latter score is superior to the
former in predicting liability to schizophrenia.17 This dis-
crepancy may be owing to the fact that our study examines
the relationship of the polygenic risk score with a brain phe-
notype (cortical thickness) rather than a liability to schizo-
phrenia. This phenotype may represent a vulnerability trait
that is not specific to a particular psychiatric disorder. Simi-
larly, genes have pleiotropic effects on psychopathologic
features.60 Herein we show that cortical thickness (in male
cannabis users) is related only to a risk score based on
genetic variations most strongly associated with schizo-
phrenia, possibly by virtue of their involvement in relevant
biological pathways (see below). We speculate that the top
SNPs relate to brain vulnerability (a first “hit”61), whereas
the nominal SNPs contribute to a broad array of factors
underlying heritability of specific clinical manifestations
(disorders), such as schizophrenia.

With this evidence, we speculate that the moderating in-
fluence of cannabis use on the association between the ge-
netic risk for schizophrenia and cortical thickness may repre-
sent a combination of reduced experience-related brain
plasticity taking place on the background of testosterone-
associated decreases in cortical gray matter. The absence of the
latter in female adolescents may represent a brain reserve that

protects them to a certain extent (Figure 1C) from the cannabis-
related perturbation of the brain-plasticity pathway. Genetic
variations in the approximately 20 genes captured by the ge-
netic risk score for schizophrenia (±5000 base pairs at each of
the 114 SNPs) may increase vulnerability of their bearers by re-
ducing the efficiency of neurotransmission (CLCN3 [NCBI
Entrez Gene 1182], CHRNA3 [NCBI Entrez Gene 1136], HCN1
[NCBI Entrez Gene 348980], CACNB2 [NCBI Entrez Gene 783],
and GPM6A [NCBI Entrez Gene 2823]), by making the brain
more sensitive to immunity-related stressors (genes in the ma-
jor histocompatibility complex), or by their involvement in
early brain development (CNTN4 [NCBI Entrez Gene 152330],
FES [NCBI Entrez Gene 2242], BCL11B [NCBI Entrez Gene
64919] and CACNB2 [NCBI Entrez Gene 783]). The fact that the
group differences in regional cortical thickness between those
who never and ever used cannabis show a gradient as a func-
tion of the regional differences in CNR1 expression in the same
set of cortical regions suggests that the above influences in-
deed interact with the cannabinoid system. Nonetheless, only
experimental studies can confirm the causal role of the above
molecular pathways in mediating the observed statistical
relationships.

Conclusions
Cannabis use in early adolescence moderates the association
between the genetic risk for schizophrenia and cortical matu-
ration among male individuals. This finding implicates pro-
cesses underlying cortical maturation in mediating the link
between cannabis use and liability to schizophrenia.
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