Traditional marijuana, high-potency cannabis and synthetic cannabinoids: increasing risk for psychosis

Robin M. Murray, Harriet Quigley, Diego Quattrone, Amir Englund, Marta Di Forti

Institute of Psychiatry, Psychology and Neuroscience, King's College, De Crespigny Park, London, SE5 8AF, UK

Epidemiological evidence demonstrates that cannabis use is associated with an increased risk of psychotic outcomes, and confirms a doseresponse relationship between the level of use and the risk of later psychosis. High-potency cannabis and synthetic cannabinoids carry the greatest risk. Experimental administration of tetrahydrocannabinol, the active ingredient of cannabis, induces transient psychosis in normal subjects, but this effect can be ameliorated by co-administration of cannabidiol. This latter is a constituent of traditional hashish, but is largely absent from modern high-potency forms of cannabis. Argument continues over the extent to which genetic predisposition is correlated to, or interacts with, cannabis use, and what proportion of psychosis could be prevented by minimizing heavy use. As yet, there is not convincing evidence that cannabis use increases risk of other psychiatric disorders, but there are no such doubts concerning its detrimental effect on cognitive function. All of the negative aspects are magnified if use starts in early adolescence. Irrespective of whether use of cannabis is decriminalized or legalized, the evidence that it is a component cause of psychosis is now sufficient for public health messages outlining the risk, especially of regular use of high-potency cannabis and synthetic cannabinoids.

Key words: Cannabis, psychosis, marijuana, synthetic cannabinoids, cognitive function, brain structure, genetic predisposition, early adolescence

(World Psychiatry 2016;15:195-204)

The use of cannabis has been illegal in most countries since the 1930s, but this has not deterred use¹. Currently, cannabis is used by around 180 million people globally². The tensions produced by this unsatisfactory situation have resulted in much attention being paid to the legal status of cannabis.

Possession of the drug in small quantities has been decriminalized officially in countries such as Portugal and the Netherlands, and unofficially in many more. In 2013, Uruguay became the first nation to legalize the sale, cultivation and distribution of cannabis³. Four US states have also legalized recreational use, and another twenty-five US states as well as Canada permit so-called "medicinal marijuana". While Uruguay has strict rules concerning access, laws vary state by state in the US, with policy being increasingly driven by entrepreneurs in search of profit, and law makers in search of taxes.

Given the above, it seems likely that consumption of cannabis will increase rather than decrease. This makes it imperative to understand the possible adverse consequences of use, even if they only affect a minority of users. In this paper we start by reviewing cannabinoids and the endocannabinoid system. We then focus on cannabis use and risk of psychiatric disorder, particularly psychosis, before touching on the effects on cognition and brain structure.

CANNABINOIDS AND THE ENDOCANNABINOID SYSTEM

Cannabis contains over one hundred cannabinoids⁴, the most important of which are tetrahydrocannabinol (THC) and cannabidiol (CBD). These are produced in tiny crystal formations around the flowering tops. Recreational cannabis has

been traditionally available as herb (marijuana, grass, weed) or resin (hashish, hash). In some countries such as the US it is smoked by itself, while in much of Europe it is smoked with tobacco. When smoked or inhaled, effects come on after a few minutes and last 2-3 hours; if eaten it can take 2 hours for the effects to be felt and they can last up to 8 hours.

Cannabinoids exert their effects primarily by interacting with the endocannabinoid system, which comprises endogenous ligands, their receptors, and the enzymes that synthesize and degrade them⁵.

There are two specific receptors: cannabinoid receptor type-1 (CB1) and cannabinoid receptor type-2 (CB2). The CB1 receptor is widespread throughout the brain, with high concentrations in the neocortex, basal ganglia and hippocampus⁶. CB1 receptors are located pre-synaptically on the terminals of GABAergic and glutamatergic neurons, where they act homeostatically to counteract the over- or under-activity of these systems by modulating pre-synaptic neurotransmitter release⁷. The CB2 receptor, initially thought to be confined to immune cells and peripheral tissues⁸, has recently also been found in the cerebellum and brain stem.

The best known endogenous cannabinoid receptor ligands are N-arachidonoylethanolamide (anandamide, AEA) and 2arachidonoylglycerol (2-AG). These are biosynthesized postsynaptically in an activity-dependent manner before being cleared by a reuptake mechanism and enzymatic hydrolysis.

THC is responsible for the euphoria and feelings of increased sociability and insightfulness, "the high" that users enjoy. It is a partial agonist at the CB1 receptor⁹. As the endocannabinoid system normally operates "on-demand" in an activity-dependent manner¹⁰, exogenous THC appears to overwhelm the endogenous system¹¹⁻¹⁵, with resulting lower levels, for example, of AEA¹⁶. Administering THC to healthy volunteers impairs learning, attention and memory in a dose-response manner¹⁷⁻²². Such impairment is likely why drivers, under the influence of cannabis, are at double risk of traffic accidents²³. Experimental studies have also shown that a sufficiently high dose of intravenous THC can induce short-lived psychotic symptoms, including paranoia and hallucinations^{19,24,25}. It also increases paranoid thoughts in a virtual reality setting²⁶.

CBD lacks significant affinity for the CB1 receptor^{27,28}, but it is able to displace THC at low nanomolar concentrations²⁹. It may act antagonistically against CB1 agonists via a nonorthosteric binding site³⁰. It appears to block or ameliorate many of the effects of THC. For example, the co-administration of CBD significantly reduces THC-induced tachycardia³¹, the anxiogenic effects of THC³², and the detrimental effects of THC on perception^{33,34} and memory³⁵.

THE CHANGING NATURE OF RECREATIONAL CANNABINOIDS

The proportion of THC in the commonly used herbal cannabis (marijuana) and resin (hashish) was 3% or less in the 1960s, but subsequently it began to rise. Growers cross-bred plants to increase potency. Then, they found that preventing pollination increased THC, as in this situation the female plant converts its energy into producing more cannabinoids rather than seeds³⁶. This type of cannabis is referred to as *sinsemilla*, which means "without seed" in Spanish, but is sometimes colloquially termed "skunk", because of its strong smell. Plants bred to produce a high concentration of THC cannot simultaneously produce a lot of CBD, so the product contains only traces of the latter³⁷.

By the early years of the 21th century, the average proportion of THC had risen to 16 and 20% in England and Holland respectively, and *sinsemilla* had taken over much of the traditional market from resin^{37,38}. Similarly, Australia saw a shift towards high-potency cannabis, with mean THC around 15%³⁹, while in the US potency reached an average of 12% by 2014⁴⁰.

In the US states where recreational cannabis or "medicinal marijuana" have been legalized, an increasingly wide variety of products are becoming available, including oils and "edibles" such as biscuits, chocolates and cakes. Novel ways of extracting THC from the plant have produced resin oil with up to 80% THC content, while other innovations delivering high THC concentrations include "vaping" and "wax dabbing".

J.W. Huffman spent over 25 years seeking to synthetize cannabinoids for therapeutic use⁴¹. However, in the late 2000s, some of his compounds started to be used as "legal highs", often termed "Spice". Subsequently, the use of such synthetic cannabinoids increased dramatically, often taken sprayed on herbal mixtures. While THC is a partial agonist with weak affinity for the CB1 receptor, synthetic cannabinoids are full agonists and generally have higher affinity. Not surprisingly, they pose a greater health risk compared to plant cannabis⁴²⁻⁴⁴. A survey of 80,000 drug users showed that those who used synthetic cannabinoids were thirty times more likely to end up in an emergency unit than users of traditional cannabis⁴⁵. Acute physical reactions include nausea and vomiting, breathlessness, hypertension, tachycardia, chest pain, and occasionally acute renal failure.

Over 200 synthetic cannabinoids have been reported available on the Internet⁴⁶. As each has a slightly different molecular structure, they can have unpredictable side effects. Furthermore, they cannot be detected by routine drug tests, making them particularly attractive to those in prison and in the army.

PSYCHOSIS

Concern that use of cannabis might induce psychosis is not new. For example, in 1896, the Scottish psychiatrist T. Clouston visited the Cairo asylum and noted that 40 out of 253 people in the hospital had insanity attributed to the use of hashish⁴⁷. However, by the 1960s, this view was commonly ridiculed as "reefer madness", with the implication that it was those who believed that cannabis could induce psychosis who were mad, rather than those who consumed the drug.

In the first prospective study to explore whether cannabis played a causal role in psychosis, Andréasson et al⁴⁸ traced 45,750 young men who had been asked about their drug use when they were conscripted into the Swedish army. Those who had used cannabis more than fifty times were six times more likely to develop schizophrenia over the next fifteen years than those who had never used it. Surprisingly, the findings were mostly ignored. Even *The Lancet*, which had published Andréasson et al's paper in 1987, carried an editorial in 1995 stating the prevailing view that "the smoking of cannabis, even long term, is not harmful to health"⁴⁹.

However, there has now been a raft of longitudinal prospective studies^{50,51}. Nine out of twelve found that cannabis use was associated with a significantly increased risk of psychotic symptoms or psychotic illness; the remaining three showed a trend in the same direction⁵²⁻⁶⁴ (Table 1). Marconi et al⁶⁵ performed a meta-analysis and showed that the more extensive the cannabis use the greater the risk for psychosis in all of the studies included. There was an odds ratio of almost four for risk of psychosis-related outcomes among the heaviest users compared to the non-users.

Is use of higher potency types of cannabis more risky than traditional forms? Di Forti et al⁶⁶ examined 410 patients with their first episode of psychotic disorder and 390 healthy controls. People using high-potency cannabis on a daily basis were five times more likely than non-users to suffer from a psychotic disorder. Use of hashish was not related to an increased risk of psychosis, possibly due to its lower THC content combined with the presence of CBD⁶⁶⁻⁶⁸.

Study	Country	Design	No. participants	Follow-up (years)	OR (95% CI) (adjusted risk)
Tien & Anthony ⁵²	US	Population based	4,494	1	2.4 (1.2-7.1)
Zammit et al ⁵³	Sweden	Conscript cohort	50,053	27	3.1 (1.7-5.5)
Manrique-Garcia et al ⁵⁴				35	1.8 (1.3-2.3)
van Os et al ⁵⁵	The Netherlands	Population based	4,045	3	2.8 (1.2-6.5)
Weiser et al ⁵⁶	Israel	Population based	9,724	4-15	2.0 (1.3-3.1)
Fergusson et al ⁵⁷	New Zealand	Birth cohort	1,265	3	1.8 (1.2-2.6)
Arseneault et al ⁵⁸	New Zealand	Birth cohort	1,034	15	4.5 (1.1-18.2)
Ferdinand et al ⁵⁹	The Netherlands	Population based	1,580	14	2.8 (1.79-4.43)
Henquet et al ⁶⁰	Germany	Population based	2,437	4	1.7 (1.1-1.5)
Wiles et al ⁶¹	UK	Population based	8,580	1.5	1.5 (0.55-3.94)
Rössler et al ⁶²	Switzerland	Community survey	591	30	1.8 (0.96-3.2)
Gage et al ⁶³	UK	Birth cohort	1,756	2	1.1 (0.76-1.65)
Rognli et al ⁶⁴	Sweden	Cohort of discharged prisoners	6,217	5	2.6 (1.40-5.0)

Table 1 Longitudinal studies concerning the role of cannabis as a risk factor for psychosis

Similarly, in a Dutch survey of 2,000 cannabis users, those who preferred cannabis with the highest CBD content had experienced fewer psychotic-like experiences⁶⁹. Morgan and Curran⁷⁰, who tested hair for cannabinoids, showed that users with both detectable THC and CBD had fewer psychotic symptoms than those with only THC. Finally, in an experimental study of 48 healthy volunteers, treatment with oral CBD before administration of intravenous THC significantly reduced the occurrence of psychotic symptoms³⁵.

Reports have begun to emerge of cases of psychosis following the use of types of cannabis with much higher THC content, for example "wax dabs"⁷¹. Psychiatric symptoms are also increasingly being reported consequent upon use of synthetic cannabinoids⁷². Papanti et al⁷³ carried out a systematic review and reported that agitation, anxiety, paranoia and psychosis can result; these reactions are sometimes referred to as "spiceophrenia". Mounting evidence suggests that more chronic psychotic disorders can occur in persistent users of synthetic cannabinoids⁷⁴.

The existence of a cannabis psychosis distinct from schizophrenia is dubious. It is true that sudden high consumption can induce a state of acute intoxication which usually rapidly resolves. This is not uncommon with consumption of edibles, where it is more difficult to titrate one's ingestion than with smoked cannabis. Use of plant or synthetic cannabinoids for a relatively short time may induce an acute psychosis from which people recover over a period of days or weeks. But the longer use continues, the more the clinical picture merges into that of schizophrenia-like psychosis^{54,64}.

Nevertheless, there are differences between people with a cannabis-associated psychosis and non-using psychotic patients. Cannabis-using patients tend to have a significantly earlier onset than psychosis patients who never used cannabis⁷⁵. One

study showed a dose-response association, with daily users of high-potency cannabis experiencing their first episode of psychosis, on average, 6 years younger than never users⁶⁸.

Cannabis-using psychotic patients also tend to have higher IQ and better neurocognition than non-using psychotic patients^{76,77}. They also have higher premorbid IQ and better premorbid social function⁷⁸ and are less likely to show neurological soft signs⁷⁹. The likely explanation is that many non-drug-using schizophrenic patients have some neurodevelopmental impairment and consequent poor premorbid cognition and social function. In contrast, those who have used cannabis are often initially clever and sociable; introduced to cannabis by their friends, they are sufficiently socially adept to be able to conceal their habit from their parents.

CRITICISMS OF THE CAUSAL HYPOTHESIS

Most European and Australasian experts are now convinced that cannabis is one of a number of contributory causes of schizophrenia. However, three sceptical articles have recently appeared from North America⁸⁰⁻⁸². We will now review the main criticisms.

One suggestion has been that those who use cannabis may be psychologically more vulnerable than those who do not. However, the Dunedin study from New Zealand controlled for psychotic symptoms at age 11, and still found a link between cannabis use and later psychotic symptoms⁵⁸.

Might some people be taking cannabis in an attempt to self-medicate symptoms of psychosis or its precursors? There is little evidence for this. A second New Zealand study, this time from Christchurch, showed that once minor psychotic symptoms developed, people tended to smoke less⁸³. Further-

more, when psychotic patients are asked why they use cannabis, they report the same hedonic reasons as the rest of the population, i.e., for enjoyment⁸⁴. Indeed, even though many know that they will develop paranoid ideas, the immediate "high" outweighs this.

A common suggestion has been that those cannabis users who go psychotic have also been using other drugs. However, a number of studies have addressed this question and not found the effect sufficient to negate the impact of cannabis⁵⁸, even when use of tobacco was accounted for^{66,67}.

Another argument states that cannabis use became more common in the latter part of the 20th century without an obvious change in the incidence of schizophrenia. In fact, there is little reliable information on temporal trends in the incidence of schizophrenia, so it is difficult to know whether this is true or not. To our knowledge, the only competent study spanning several decades and using the same research criteria for schizophrenia reported that the incidence doubled between 1965 and 1999, and that the proportion of schizophrenic patients using cannabis increased disproportionally compared with other psychiatric patients⁸⁵.

GENETIC PREDISPOSITION OR GENE X ENVIRONMENT INTERACTION?

A popular explanation for the association between cannabis use and psychosis is shared genetic vulnerability^{80,81,86}. Cannabis-using psychotic patients not uncommonly have other relative(s) who are psychotic⁸⁷. However, often the other psychotic member(s) of the family are also using cannabis.

One can now examine the relationship between predisposition to psychosis, as measured by the polygenic risk score for schizophrenia, and cannabis use. Power et al⁸⁸ examined the effect of the polygenic risk score on cannabis use in a large sample of Australians. The score was responsible for only a very small proportion of cannabis consumption. In a similar manner, Gage et al⁸⁹ suggested that those who used highpotency cannabis might be especially genetically predisposed to psychosis. However, Di Forti et al⁹⁰, who examined the polygenic risk score for schizophrenia in users of low- and highpotency cannabis, found no evidence to support this view.

A more likely possibility is that some individuals are more vulnerable to the psychotogenic effects of cannabis than others. No published study has yet examined a possible interaction between the polygenic risk score for schizophrenia and cannabis use in causing psychosis. However, schizophrenia patients with large, rare deletions are less likely to have comorbid cannabis abuse over their lifetime than those without such copy number variants⁹¹. This provides support for a threshold model of risk, with those carrying a copy number variant needing fewer adverse environmental exposures to become frankly psychotic.

Other work has examined candidate genes involved in the dopamine system. Caspi et al^{92} suggested that variation in the

catechol-O-methyltransferase (COMT) gene might moderate lability to cannabis-induced psychosis, but attempted replications have been inconsistent. Most recently, an experimental study⁹³ found no effect of this COMT polymorphism on THCinduced psychotic symptoms, but those with the val/val genotype had a greater decrement in working memory.

Two case-control studies have reported that a variant of AKT1 increases risk of psychotic illness among cannabis users, and a third has shown that those who carry this variant show a greater psychotogenic response to smoked cannabis⁹⁴⁻⁹⁶. Another report indicates that a variant in the D2 receptor gene may also increase psychosis risk, and that the risk is even greater in carriers of both this variant and the above-mentioned AKT1 polymorphism⁹⁷.

WHAT IS THE MECHANISM OF ACTION?

Bianconi et al⁸⁴ showed that cannabis-using psychotic patients appeared to be more sensitive to both the positive and negative effects of the drug. Similar findings have been reported from individuals at high clinical risk of developing psychosis⁹⁸. D'Souza et al²⁴ showed that people with schizophrenia had a stronger reaction to the psychotogenic and cognitive effects of intravenous THC compared to healthy controls.

In animal studies, administration of THC reliably leads to increased dopamine release, but human studies have been more equivocal. One positron emission tomography (PET) study reported an increase in striatal dopamine release, but another found no significant effect. A re-analysis combining data from the two studies reported a small but significant increase in THC-induced dopamine release⁹⁹.

Several PET studies have shown that cannabis users, like other drug abusers, have a low capacity to synthetize and release striatal dopamine. However, Volkow et al¹⁰⁰ reported that, unlike other drug abusers, cannabis users show no alteration in striatal D2/D3 receptors. Furthermore, following an amphetamine challenge, psychotic patients who use cannabis, despite the absence of marked elevation in dopamine release, present a greater exacerbation of their symptoms compared to patients who never used it. These findings might be explained by cannabis use inducing post-synaptic dopamine supersensitivity¹⁰¹, as was found by Ginovart et al¹⁰² in their study of animals given chronic THC. This hypothesis is strengthened by the genetic evidence, reviewed above, that variation in post-synaptic genes may predispose to cannabis-associated psychosis.

OUTCOME AND TREATMENT

A recent meta-analysis showed that psychotic patients who continued cannabis use had higher relapse rates, longer hospital admissions, and more severe positive symptoms than either former users who discontinued cannabis or never-users¹⁰³.

Unfortunately, persuading cannabis users to stop is not easy. A variety of therapies, especially cognitive behavior therapy and motivational interviewing, have been tried, but so far without great success. Given tokens for cannabis-free urine tests is currently under trial. The only pharmacological treatment that has had any success is clozapine: a double-blind trial showed it to have a useful effect in diminishing craving for cannabis¹⁰⁴.

OTHER PSYCHIATRIC DISORDERS

Cannabis dependence

Withdrawal symptoms are usually relatively minor, because cannabis remains in the body for several weeks. However, anxiety and craving, irritability, insomnia, appetite disturbance, dysphoria and depression can develop.

Almost 10% of users will become dependent^{105,106}, and some claim that the rate goes as high as 17% if use starts in adolescence¹⁰⁷. Certainly, cannabis dependence is an increasingly common cause of help seeking in Australia, UK, continental Europe and North America^{23,108}. An Internet survey¹⁰⁹ reported that high-potency cannabis use was associated with an especially increased likelihood of dependence.

Depression and anxiety disorders

Cross-sectional studies report a high prevalence of depression and anxiety disorders in cannabis users¹¹⁰⁻¹¹³, but the direction of effect remains unclear^{112,114-116}.

The Swedish conscript cohort showed no evidence of increased risk of depression in cannabis users¹¹⁷, and systematic reviews have provided only weak evidence that cannabis use increases the risk of affective outcomes^{118,119}. However, one such review concluded that cannabis use was associated with a modestly increased risk for depression, with heavy use accounting for a slightly stronger risk¹²⁰.

On the other hand, a prospective study of a large US cohort found that cannabis use was associated with increased odds of alcohol, nicotine and other drug use, but not of mood or anxiety disorders¹²¹.

Post-traumatic stress disorder

People with post-traumatic stress disorder (PTSD) are especially likely to use cannabis¹²²⁻¹²⁴, but again the nature of this relationship is uncertain. Some studies show that traumatic experiences and subsequent PTSD increase the risk of drug abuse^{125,126}.

Cannabis has become popular among US military veterans suffering from PTSD, and several US states have approved its medicinal use for such symptoms. However, as yet there is no evidence concerning the safety or efficacy of this practice.

Attention-deficit/hyperactivity disorder

There is a high prevalence of attention-deficit/hyperactivity disorder (ADHD) in adults seeking treatment for cannabis use disorders¹²⁷. Prospective studies show that cannabis use increases risk of adult ADHD¹²⁸, while childhood hyperactivity/ impulsivity predicts early substance use¹²⁹.

It remains controversial whether medicinal use of cannabis reduces the use of stimulant medication. A small placebo controlled trial on adults with ADHD is underway¹³⁰.

Summary

The evidence that cannabis use increases the risk of depression, anxiety disorders, PTSD or ADHD is much less convincing than that for psychosis. Indeed, it remains possible, but not proven, that cannabis may be helpful for people with PTSD and ADHD.

EFFECTS ON BRAIN AND COGNITION

There are many reports that cannabis use can alter brain structure. However, many of the studies are small, the control groups are inadequate, and most have not fully controlled for the effects of alcohol consumption (heavy cannabis users also tend to be heavy alcohol users)¹³¹.

Two recent large studies found no main effect of cannabis on brain structure^{132,133}. However, the former study¹³² stands out in that the investigators found an interaction with the polygenic risk score for schizophrenia, such that individuals with a high (but not low) polygenic risk score who used cannabis did show decreased cortical thickness. Thus, people with a vulnerability to schizophrenia may also be more vulnerable to the adverse effects of cannabis on the brain.

Potency has not generally been taken into consideration in imaging studies. However, Yucel et al¹³⁴ found that those using high-potency cannabis showed hippocampal volume decrements, while those who had used preparations containing CBD did not. Similarly, in another study, cannabis users with hair samples higher in CBD were found to show less decrement in the volume of the right hippocampus than users with less CBD¹³⁵. A further magnetic resonance imaging study found that use of high-potency cannabis was associated with disturbed white matter connections in the corpus callosum, an effect which was absent in hashish users¹³⁶.

Cannabis users perform worse on executive function, attention, verbal ability and memory tasks than non-users^{137,138}. Follow-up of the Dunedin cohort showed a decline in IQ scores of six points between ages 13 and 38 among those who had been repeatedly diagnosed with cannabis use disorder¹³⁹. However, other shorter studies have failed to replicate this finding^{140,141}. Recently, in a study following up 5,115 young men and women for 25 years, past exposure to marijuana was associated with worse verbal memory, but did not appear to affect executive function or processing speed¹⁴².

As recently summarized by Hall and Lynskey¹⁴³, "case-control studies have generally found poorer verbal learning, memory, and attention in those who regularly use marijuana than in controls; the size of these differences usually has been related to the duration and frequency of marijuana use". Some studies suggest that cognition can recover fully when use stops¹⁴⁴, while others indicate that only partial recovery is possible¹⁴².

Once again, CBD may ameliorate the negative impact of THC. A naturalistic study with 134 users found that participants using cannabis higher in CBD displayed no cognitive impairment¹⁴⁵. The same group explored memory functioning in 120 users: participants whose hair tested positive for CBD and THC displayed significantly better performance than those with only THC¹⁴⁶.

ARE ADOLESCENTS ESPECIALLY VULNERABLE?

Some brain imaging studies have found greater brain changes in those who started heavy cannabis use in adolescence as opposed to adult life, including decreased volume in several cortical and subcortical regions, together with evidence of white matter disruption and abnormal brain activation responses to cognitive tasks¹³⁸. These reports await confirmation.

Pope et al¹⁴⁷ found that the initiation of cannabis use before age 17 was associated with lower verbal IQ scores in long-term heavy cannabis users. There was also greater IQ decline in those Dunedin cohort members who started use in adolescence¹⁴⁸, but social decline was not so associated with age of onset¹⁴⁹.

Silins et al¹⁵⁰ reviewed 2,500 young people in Australasia and found that daily cannabis use before age 17 was associated with "clear reductions" in the likelihood of completing high school and obtaining a university degree. Similarly, a 1-year follow-up of 1,155 adolescents found that weekly cannabis use was related to poorer performance in maths and English tests¹⁵¹.

In the original report from the Dunedin cohort concerning psychosis, those who started to use cannabis at age 18 or later showed only a small, non-significant increase in the risk of schizophrenia-like psychosis by age 26, but the risk increased fourfold among those starting at age 15 or earlier⁵⁸.

A possible explanation for the above reports is that the brain is still developing in those who start cannabis in their teens. Exposing the juvenile brain to the drug might permanently impair the endocannabinoid system, and impact adversely on brain and neurotransmitter function¹³⁸.

THERAPEUTIC USE OF CANNABIS AND ITS COMPONENTS

The problems associated with the recreational use of cannabis should not blind us to the possibility that some of its constituents may have useful therapeutic effects, as for example with opiates.

A German clinical trial¹⁵² found that CBD had antipsychotic actions equivalent to a standard antipsychotic, amisulpride, in patients with schizophrenia. Furthermore, in a study of psychotic patients only partially responding to antipsychotics, the addition of CBD rather than placebo led to a significant improvement in the score on a psychosis scale¹⁵³.

Cannabinoid receptors modulate pain perception, so not surprisingly there are reports of therapeutic use of exogenous cannabinoids in human pain. A beneficial effect of smoked THC on the pain of HIV-associated neuropathy has been reported¹⁵⁴, and inhaled cannabis was found to provide short-term relief from chronic neuropathic pain, with a number-needed-to-treat of 5.6^{155} .

Several cannabinoid drugs are already available. For example, THC has long been used as an antiemetic. THC or a combination product of THC and CBD, marketed in some countries as an oromucosal spray (nabiximols), can be a useful option for pain or painful spasms in patients with multiple sclerosis^{156,157}. CBD may be effective in the treatment of some patients with epilepsy¹⁵⁸⁻¹⁶¹, but the data are insufficient to provide definitive evidence¹⁶².

CONCLUSIONS

As there is no good animal model of psychosis, it is difficult to conclusively prove any environmental cause. Thus, it is unclear what changes an exogenous cannabinoid would need to induce in an animal in order to provide definitive proof that cannabis can cause psychosis. Given the lack of an equivalent of painting tobacco tar on mice to demonstrate its carcinogenicity, is it sensible to wait for absolute proof that exogenous cannabinoids are a component cause of psychosis?

Gage et al¹⁶³, who exhaustively scrutinized the epidemiological literature for possible confounding, bias, misclassification, reverse causation and other explanations for the association, concluded that "epidemiologic studies provide strong enough evidence to warrant a public health message that cannabis use can increase the risk of psychotic disorders".

Of course, it is important not to overstate our knowledge in any public health campaign. For example, there is still uncertainty over the extent to which cannabis use can induce psychosis in the absence of genetic vulnerability. There remains argument over the proportion of psychosis that could be prevented if nobody used cannabis; estimates range from 8 to $24\%^{66}$. The effects of cannabis on the brain also remain to be clarified. Moreover, we need to take care that public education does not get confused with the highly charged debate for and against decriminalization or legalization¹⁶⁴.

On the other hand, changes in legislation in several countries provide "natural" experiments concerning the effects of population exposure to cannabis. Will legalization result in an increase in consumption? Early reports are contradictory^{165,166}. Will liberalization of laws lead to use of more potent forms of cannabis, or will it popularize safer varieties? Will educational campaigns focusing on the risks of regular use of highpotency cannabis or synthetic cannabinoids be effective? Will diminution of legal constraints on adult use result in greater use by those in their early teens who seem most susceptible to adverse effects? Will the mental health and addiction services be able to cope? It is important that researchers take the opportunity to monitor changes in the legal status of cannabis use and their effects on mental health.

REFERENCES

- Room R. Cannabis policy: moving beyond stalemate. Oxford: Oxford University Press, 2010.
- United Nations Office on Drugs and Crime. World drug report 2015. New York: United Nations, 2015.
- Room R. Legalizing a market for cannabis for pleasure: Colorado, Washington, Uruguay and beyond. Addiction 2014;109:345-51.
- Hanus LO. Pharmacological and therapeutic secrets of plant and brain (endo)cannabinoids. Med Res Rev 2009;29:213-71.
- Mechoulam R, Parker LA. The endocannabinoid system and the brain. Annu Rev Psychol 2013;64:21-47.
- Howlett AC, Bidaut-Russell M, Devane WA et al. The cannabinoid receptor: biochemical, anatomical and behavioral characterization. Trends Neurosci 1990;13:420-3.
- Katona I, Freund TF. Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci 2012;35:529-58.
- Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 2003;4:873-84.
- 9. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 2008;153:199-215.
- Lutz B. On-demand activation of the endocannabinoid system in the control of neuronal excitability and epileptiform seizures. Biochem Pharmacol 2004;68:1691-8.
- Bocker KB, Gerritsen J, Hunault CC et al. Cannabis with high delta9-THC contents affects perception and visual selective attention acutely: an event-related potential study. Pharmacol Biochem Behav 2010;96:67-74.
- D'Souza DC, Fridberg DJ, Skosnik PD et al. Dose-related modulation of event-related potentials to novel and target stimuli by intravenous Delta(9)-THC in humans. Neuropsychopharmacology 2012;37:1632-46.
- Ilan AB, Gevins A, Coleman M et al. Neurophysiological and subjective profile of marijuana with varying concentrations of cannabinoids. Behav Pharmacol 2005;16:487-96.
- Murray RM, Morrison PD, Henquet C et al. Cannabis, the mind and society: the hash realities. Nat Rev Neurosci 2007;8:885-95.
- Morrison PD, Nottage J, Stone JM et al. Disruption of frontal theta coherence by Delta9-tetrahydrocannabinol is associated with positive psychotic symptoms. Neuropsychopharmacology 2011;36:827-36.
- Morgan CJ, Page E, Schaefer C et al. Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. Br J Psychiatry 2013;202:381-2.
- Miller LL, Cornett TL. Marijuana: dose effects on pulse rate, subjective estimates of intoxication, free recall and recognition memory. Pharmacol Biochem Behav 1978;9:573-7.
- Tinklenberg J, Melges F, Hollister L et al. Marijuana and immediate memory. Nature 1970;226:1171-2.
- Morrison PD, Zois V, McKeown DA et al. The acute effects of synthetic intravenous Delta9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychol Med 2009;39:1607-16.
- Hart CL, Ilan AB, Gevins A et al. Neurophysiological and cognitive effects of smoked marijuana in frequent users. Pharmacol Biochem Behav 2010; 96:333-41.
- Nordstrom BR, Hart CL. Assessing cognitive functioning in cannabis users: cannabis use history an important consideration. Neuropsychopharmacology 2006;31:2798-9.
- 22. Schoeler T, Bhattacharyya S. The effect of cannabis use on memory function: an update. Subst Abuse Rehabil 2013;4:11-27.

- Hall W. What has research over the past two decades revealed about the adverse health effects of recreational cannabis use? Addiction 2015;110: 19-35.
- D'Souza DC, Abi-Saab WM, Madonick S et al. Delta-9-tetrahydrocannabinol effects in schizophrenia: implications for cognition, psychosis, and addiction. Biol Psychiatry 2005;57:594-608.
- D'Souza DC, Ranganathan M, Braley G et al. Blunted psychotomimetic and amnestic effects of delta-9-tetrahydrocannabinol in frequent users of cannabis. Neuropsychopharmacology 2008;33:2505-16.
- 26. Freeman D, Dunn G, Murray RM et al. How cannabis causes paranoia: using the intravenous administration of 9-tetrahydrocannabinol (THC) to identify key cognitive mechanisms leading to paranoia. Schizophr Bull 2015;41:391-9.
- Bisogno T, Hanus L, De Petrocellis L et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 2001;134:845-52.
- Thomas A, Ross RA, Saha B et al. 6"-Azidohex-2"-yne-cannabidiol: a potential neutral, competitive cannabinoid CB1 receptor antagonist. Eur J Pharmacol 2004;487:213-21.
- 29. Thomas A, Baillie GL, Phillips AM et al. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol 2007;150:613-23.
- McPartland JM, Duncan M, Di Marzo V et al. Are cannabidiol and Delta(9)-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol 2015;172:737-53.
- Karniol IG, Shirakawa I, Kasinski N et al. Cannabidiol interferes with the effects of delta9-tetrahydrocannabinol in man. Eur J Pharmacol 1974;28: 172-7.
- Zuardi AW, Shirakawa I, Finkelfarb E et al. Action of cannabidiol on the anxiety and other effects produced by delta 9-THC in normal subjects. Psychopharmacology 1982;76:245-50.
- 33. Hindocha C, Freeman TP, Schafer G et al. Acute effects of delta-9tetrahydrocannabinol, cannabidiol and their combination on facial emotion recognition: a randomised, double-blind, placebo-controlled study in cannabis users. Eur Neuropsychopharmacol 2015;25:325-34.
- Leweke FM, Schneider U, Radwan M et al. Different effects of nabilone and cannabidiol on binocular depth inversion in man. Pharmacol Biochem Behav 2000;66:175-81.
- Englund A, Morrison PD, Nottage J et al. Cannabidiol inhibits THCelicited paranoid symptoms and hippocampal-dependent memory impairment. J Psychopharmacol 2013;27:19-27.
- Potter DJ. A review of the cultivation and processing of cannabis (Cannabis sativa L.) for production of prescription medicines in the UK. Drug Test Anal 2014;6:31-8.
- Hardwick S, King LA. Home Office cannabis potency study 2008. St. Albans: Home Office Scientific Development Branch, 2008.
- Pijlman FT, Rigter SM, Hoek J et al. Strong increase in total delta-THC in cannabis preparations sold in Dutch coffee shops. Addict Biol 2005;10: 171-80.
- Swift W, Wong A, Li KM et al. Analysis of cannabis seizures in NSW, Australia: cannabis potency and cannabinoid profile. PLoS One 2013;8: e70052.
- ElSohly MA, Mehmedic Z, Foster S et al. Changes in cannabis potency over the last 2 decades (1995-2014): analysis of current data in the United States. Biol Psychiatry 2016;79:613-9.
- Seely KA, Lapoint J, Moran JH et al. Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids. Prog Neuropsychopharmacol Biol Psychiatry 2012;39:234-43.
- Spaderna M, Addy PH, D'Souza DC. Spicing things up: synthetic cannabinoids. Psychopharmacology 2013;228:525-40.
- 43. European Monitoring Center for Drugs and Drug Addiction. European drug report 2016. Lisbon: European Monitoring Center for Drugs and Drug Addiction, 2016.
- 44. Tait RJ, Caldicott D, Mountain D et al. A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin Toxicol 2016;54:1-13.
- 45. Winstock A, Lynskey M, Borschmann R, et al. Risk of emergency medical treatment following consumption of cannabis or synthetic cannabinoids in a large global sample. J Psychopharmacol 2015;29:698-703.
- Schifano F, Orsolini L, Duccio Papanti G et al. Novel psychoactive substances of interest for psychiatry. World Psychiatry 2015;14:15-26.

- Clouston TS. The Cairo Asylum Dr. Warnock on hasheesh insanity. Br J Psychiatry 1896;42:790-5.
- Andréasson S, Engström A, Allebeck P et al. Cannabis and schizophrenia. A longitudinal study of Swedish conscripts. Lancet 1987;330:1483-6.
- 49. Anonymous. Deglamorising cannabis. Lancet 1995;346:1241.
- Gage SH, Hickman M, Zammit S. Association between cannabis and psychosis: epidemiologic evidence. Biol Psychiatry 2016;79:549-56.
- 51. Murray RM, Di Forti M. Cannabis and psychosis: what degree of proof do we require? Biol Psychiatry 2016;79:514-5.
- Tien AY, Anthony JC. Epidemiological analysis of alcohol and drug use as risk factors for psychotic experiences. J Nerv Ment Dis 1990;178:473-80.
- Zammit S, Allebeck P, Andréasson S et al. Self reported cannabis use as a risk factor for schizophrenia in Swedish conscripts of 1969: historical cohort study. BMJ 2002;325:1199.
- Manrique-Garcia E, Zammit S, Dalman C et al. Cannabis, schizophrenia and other non-affective psychoses: 35 years of follow-up of a populationbased cohort. Psychol Med 2012;42:1321-8.
- van Os J, Bak M, Hanssen M et al. Cannabis use and psychosis: a longitudinal population-based study. Am J Epidemiol 2002;156:319-27.
- Weiser M, Knobler HY, Noy S et al. Clinical characteristics of adolescents later hospitalized for schizophrenia. Am J Med Genet 2002;114: 949-55.
- 57. Fergusson DM, Horwood LJ, Swain-Campbell NR. Cannabis dependence and psychotic symptoms in young people. Psychol Med 2003;33:15-21.
- Arseneault L, Cannon M, Poulton R et al. Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. BMJ 2002;325: 1212-3.
- 59. Ferdinand RF, Sondeijker F, van der Ende J et al. Cannabis use predicts future psychotic symptoms, and vice versa. Addiction 2005;100:612-8.
- Henquet C, Krabbendam L, Spauwen J et al. Prospective cohort study of cannabis use, predisposition for psychosis, and psychotic symptoms in young people. BMJ 2005;330:11.
- Wiles NJ, Zammit S, Bebbington P et al. Self-reported psychotic symptoms in the general population: results from the longitudinal study of the British National Psychiatric Morbidity Survey. Br J Psychiatry 2006; 188:519-26.
- Rössler W, Hengartner MP, Angst J et al. Linking substance use with symptoms of subclinical psychosis in a community cohort over 30 years. Addiction 2012;107:1174-84.
- 63. Gage SH, Hickman M, Heron J et al. Associations of cannabis and cigarette use with psychotic experiences at age 18: findings from the Avon Longitudinal Study of Parents and Children. Psychol Med 2014;44:3435-44.
- 64. Rognli EB, Berge J, Håkansson A et al. Long-term risk factors for substance-induced and primary psychosis after release from prison. A longitudinal study of substance users. Schizophr Res 2015;168:185-90.
- Marconi A, Di Forti M, Lewis CM et al. Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophr Bull 2016;42:1262-9.
- 66. Di Forti M, Marconi A, Carra E et al. Proportion of patients in south London with first-episode psychosis attributable to use of high potency cannabis: a case-control study. Lancet Psychiatry 2015;2:233-8.
- 67. Di Forti M, Morgan C, Dazzan P et al. High-potency cannabis and the risk of psychosis. Br J Psychiatry 2009;195:488-91.
- Di Forti M, Sallis H, Allegri F et al. Daily use, especially of high-potency cannabis, drives the earlier onset of psychosis in cannabis users. Schizophr Bull 2014;40:1509-17.
- 69. Schubart CD, Sommer IE, van Gastel WA et al. Cannabis with high cannabidiol content is associated with fewer psychotic experiences. Schizophr Res 2011;130:216-21.
- Morgan CJ, Curran HV. Effects of cannabidiol on schizophrenia-like symptoms in people who use cannabis. Br J Psychiatry 2008;192:306-7.
- 71. Pierre JM, Gandal M, Son M. Cannabis-induced psychosis associated with high potency "wax dabs". Schizophr Res 2016;172:211-2.
- Castaneto MS, Gorelick DA, Desrosiers NA et al. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend 2014;144:12-41.
- Papanti D, Schifano F, Botteon G et al. "Spiceophrenia": a systematic overview of "spice"-related psychopathological issues and a case report. Hum Psychopharmacol 2013;28:379-89.
- Fattore L. Synthetic cannabinoids further evidence supporting the relationship between cannabinoids and psychosis. Biol Psychiatry 2016;79: 539-48.

- Large M, Sharma S, Compton MT et al. Cannabis use and earlier onset of psychosis: a systematic meta-analysis. Arch Gen Psychiatry 2011;68: 555-61.
- Loberg EM, Helle S, Nygard M et al. The cannabis pathway to nonaffective psychosis may reflect less neurobiological vulnerability. Front Psychiatry 2014;5:159.
- Arnold C, Allott K, Farhall J et al. Neurocognitive and social cognitive predictors of cannabis use in first-episode psychosis. Schizophr Res 2015;168: 231-7.
- Ferraro L, Russo M, O'Connor J et al. Cannabis users have higher premorbid IQ than other patients with first onset psychosis. Schizophr Res 2013; 150:129-35.
- 79. Ruiz-Veguilla M, Callado LF, Ferrin M. Neurological soft signs in patients with psychosis and cannabis abuse: a systematic review and metaanalysis of paradox. Curr Pharm Des 2012;18:5156-64.
- 80. Ksir C, Hart CL. Cannabis and psychosis: a critical overview of the relationship. Curr Psychiatry Rep 2016;18:12.
- 81. Hill M. Perspective: Be clear about the real risks. Nature 2015;525:S14.
- Haney M, Evins AE. Does cannabis cause, exacerbate or ameliorate psychiatric disorders? An oversimplified debate discussed. Neuropsychopharmacology 2016;41:393-401.
- Fergusson DM, Boden JM, Horwood LJ. Psychosocial sequelae of cannabis use and implications for policy: findings from the Christchurch Health and Development Study. Soc Psychiatry Psychiatr Epidemiol 2015;50: 1317-26.
- Bianconi F, Bonomo M, Marconi A et al. Differences in cannabis-related experiences between patients with a first episode of psychosis and controls. Psychol Med 2016;46:995-1003.
- Boydell J, van Os J, Caspi A et al. Trends in cannabis use prior to first presentation with schizophrenia, in South-East London between 1965 and 1999. Psychol Med 2006;36:1441-6.
- Ksir C, Hart CL. Correlation still does not imply causation. Lancet Psychiatry 2016;3:401.
- McGuire PK, Jones P, Harvey I et al. Morbid risk of schizophrenia for relatives of patients with cannabis-associated psychosis. Schizophr Res 1995; 15:277-81.
- Power RA, Verweij KJ, Zuhair M et al. Genetic predisposition to schizophrenia associated with increased use of cannabis. Mol Psychiatry 2014; 19:1201-4.
- Gage SH, Munafò MR, MacLeod J et al. Cannabis and psychosis. Lancet Psychiatry 2015;2:380.
- Di Forti M, Vassos E, Lynskey M et al. Cannabis and psychosis Authors' reply. Lancet Psychiatry 2015;2:382.
- 91. Martin AK, Robinson G, Reutens D et al. Cannabis abuse and age at onset in schizophrenia patients with large, rare copy number variants. Schizophr Res 2014;155:21-5.
- 92. Caspi A, Moffitt TE, Cannon M et al. Moderation of the effect of adolescentonset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene x environment interaction. Biol Psychiatry 2005;57:1117-27.
- 93. Tunbridge EM, Dunn G, Murray RM et al. Genetic moderation of the effects of cannabis: catechol-O-methyltransferase (COMT) affects the impact of Delta9-tetrahydrocannabinol (THC) on working memory performance but not on the occurrence of psychotic experiences. J Psychopharmacol 2015;29:1146-51.
- van Winkel R, van Beveren NJ, Simons C. AKT1 moderation of cannabisinduced cognitive alterations in psychotic disorder. Neuropsychopharmacology 2011;36:2529-37.
- 95. Di Forti M, Iyegbe C, Sallis H et al. Confirmation that the AKT1 (rs2494732) genotype influences the risk of psychosis in cannabis users. Biol Psychiatry 2012;72:811-6.
- Morgan CJ, Freeman TP, Powell J et al. AKT1 genotype moderates the acute psychotomimetic effects of naturalistically smoked cannabis in young cannabis smokers. Transl Psychiatry 2016;6:e738.
- Colizzi M, Iyegbe C, Powell J et al. Interaction between functional genetic variation of DRD2 and cannabis use on risk of psychosis. Schizophr Bull 2015;41:1171-82.
- Gill KE, Poe L, Azimov N et al. Reasons for cannabis use among youths at ultra high risk for psychosis. Early Interv Psychiatry 2015;9:207-10.
- Bossong MG, Mehta MA, van Berckel BN et al. Further human evidence for striatal dopamine release induced by administration of 9-tetrahydrocannabinol (THC): selectivity to limbic striatum. Psychopharmacology 2015;232:2723-9.

- 100. Volkow ND, Wang GJ, Telang F et al. Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci USA 2014;111:E3149-56.
- Murray RM, Mehta M, Di Forti M. Different dopaminergic abnormalities underlie cannabis dependence and cannabis-induced psychosis. Biol Psychiatry 2014;75:430-1.
- 102. Ginovart N, Tournier BB, Moulin-Sallanon M, et al. Chronic Delta(9)-tet-rahydrocannabinol exposure induces a sensitization of dopamine D(2)/(3) receptors in the mesoaccumbens and nigrostriatal systems. Neuro-psychopharmacology 2012;37:2355-67.
- 103. Schoeler T, Monk A, Sami MB et al. Continued versus discontinued cannabis use in patients with psychosis: a systematic review and meta-analysis. Lancet Psychiatry 2016;3:215-25.
- 104. Brunette MF, Dawson R, O'Keefe CD et al. A randomized trial of clozapine vs. other antipsychotics for cannabis use disorder in patients with schizophrenia. J Dual Diagn 2011;7:50-63.
- 105. Budney AJ, Roffman R, Stephens RS et al. Marijuana dependence and its treatment. Addict Sci Clin Pract 2007;4:4-16.
- 106. Lopez-Quintero C, Perez de los Cobos J, Hasin DS et al. Probability and predictors of transition from first use to dependence on nicotine, alcohol, cannabis, and cocaine: results of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Drug Alcohol Depend 2011; 115:120-30.
- 107. Anthony J. The epidemiology of cannabis dependence. In: Roffman RA, Stephens RS (eds). Cannabis dependence: its nature, consequences and treatment. Cambridge: Cambridge University Press, 2006:58-105.
- Health & Social Care Information Centre. Statistics on drug misuse. England 2014. London: Health & Social Care Information Centre, 2014.
- Freeman T, Winstock A. Examining the profile of high-potency cannabis and its association with severity of cannabis dependence. Psychol Med 2015;45:3181-9.
- 110. Toftdahl NG, Nordentoft M, Hjorthøj C. Prevalence of substance use disorders in psychiatric patients: a nationwide Danish population-based study. Soc Psychiatry Psychiatr Epidemiol 2016;51:129-40.
- 111. Degenhardt L, Hall W, Lynskey M. The relationship between cannabis use, depression and anxiety among Australian adults: findings from the National Survey of Mental Health and Well-Being. Soc Psychiatry Psychiatr Epidemiol 2001;36:219-27.
- 112. Feingold D, Weiser M, Rehm J et al. The association between cannabis use and anxiety disorders: results from a population-based representative sample. Eur Neuropsychopharmacol 2016;26:493-505.
- 113. Kedzior KK, Laeber LT. A positive association between anxiety disorders and cannabis use or cannabis use disorders in the general population – a meta-analysis of 31 studies. BMC Psychiatry 2014;14:1-22.
- Chen C-Y, Wagner AF, Anthony CJ. Marijuana use and the risk of major depressive episode. Soc Psychiatry Psychiatr Epidemiol 2002;37:199-206.
- 115. Feingold D, Weiser M, Rehm J et al. The association between cannabis use and mood disorders: a longitudinal study. J Affect Disord 2015;172: 211-8.
- 116. Crippa JA, Zuardi AW, Martín-Santos R et al. Cannabis and anxiety: a critical review of the evidence. Hum Psychopharmacol 2009;24:515-23.
- 117. Manrique-Garcia E, Zammit S, Dalman C et al. Cannabis use and depression: a longitudinal study of a national cohort of Swedish conscripts. BMC Psychiatry 2012;12:112.
- 118. Degenhardt L, Hall W, Lynskey M. Exploring the association between cannabis use and depression. Addiction 2003;98:1493-504.
- 119. Moore THM, Zammit S, Lingford-Hughes A et al. Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet 2007;370:319-28.
- Lev-Ran S, Roerecke M, Le Foll B et al. The association between cannabis use and depression: a systematic review and meta-analysis of longitudinal studies. Psychol Med 2014;44:797-810.
- Blanco C, Hasin DS, Wall MM et al. Cannabis use and risk of psychiatric disorders: prospective evidence from a US national longitudinal study. JAMA Psychiatry 2016;73:388-95.
- 122. Cougle JR, Bonn-Miller MO, Vujanovic AA et al. Posttraumatic stress disorder and cannabis use in a nationally representative sample. Psychol Addict Behav 2011;25:554-8.
- 123. Kevorkian S, Bonn-Miller MO, Belendiuk K et al. Associations among trauma, posttraumatic stress disorder, cannabis use, and cannabis use disorder in a nationally representative epidemiologic sample. Psychol Addict Behav 2015;29:633-8.

- 124. Kilpatrick DG, Acierno R, Saunders B et al. Risk factors for adolescent substance abuse and dependence: data from a national sample. J Consult Clin Psychol 2000;68:19-30.
- Chilcoat HD, Breslau N. Posttraumatic stress disorder and drug disorders: testing causal pathways. Arch Gen Psychiatry 1998;55:913-7.
- 126. Vlahov D, Galea S, Resnick H et al. Increased use of cigarettes, alcohol, and marijuana among Manhattan, New York, residents after the September 11th terrorist attacks. Am J Epidemiol 2002;155:988-96.
- Notzon DP, Pavlicova M, Glass A et al. ADHD is highly prevalent in patients seeking treatment for cannabis use disorders. J Atten Disord (in press).
- Fergusson DM, Boden JM. Cannabis use and adult ADHD symptoms. Drug Alcohol Depend 2008;95:90-6.
- Chang Z, Lichtenstein P, Larsson H. The effects of childhood ADHD symptoms on early-onset substance use: a Swedish twin study. J Abnorm Child Psychol 2012;40:425-35.
- 130. Experimental Medicine in ADHD Cannabinoids (EMA-C). <u>https://</u>clinicaltrials.gov/.
- 131. Weiland BJ, Thayer RE, Depue BE et al. Daily marijuana use is not associated with brain morphometric measures in adolescents or adults. J Neurosci 2015;35:1505-12.
- French L, Gray C, Leonard G et al. Early cannabis use, polygenic risk score for schizophrenia and brain maturation in adolescence. JAMA Psychiatry 2015;72:1002-11.
- Pagliaccio D, Barch DM, Bogdan R et al. Shared predisposition in the association between cannabis use and subcortical brain structure. JAMA Psychiatry 2015;72:994-1001.
- Yucel M, Lorenzetti V, Suo C et al. Hippocampal harms, protection and recovery following regular cannabis use. Transl Psychiatry 2016;6:e710.
- 135. Demirakca T, Sartorius A, Ende G et al. Diminished gray matter in the hippocampus of cannabis users: possible protective effects of cannabidiol. Drug Alcohol Depend 2011;114:242-5.
- 136. Rigucci S, Marques TR, Di Forti M et al. Effect of high-potency cannabis on corpus callosum microstructure. Psychol Med 2016;46:841-54.
- 137. Schoeler T, Kambeitz J, Behlke I et al. The effects of cannabis on memory function in users with and without a psychotic disorder: findings from a combined meta-analysis. Psychol Med 2016;46:177-88.
- 138. Volkow ND, Swanson JM, Evins AE et al. Effects of cannabis use on human behavior, including cognition, motivation, and psychosis: a review. JAMA Psychiatry 2016;73:292-7.
- Meier MH, Caspi A, Ambler A, et al. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc Natl Acad Sci USA 2012;109:E2657-64.
- Mokrysz C, Landy R, Gage SH et al. Are IQ and educational outcomes in teenagers related to their cannabis use? A prospective cohort study. J Psychopharmacol 2016;30:159-68.
- 141. Jackson NJ, Isen JD, Khoddam R et al. Impact of adolescent marijuana use on intelligence: results from two longitudinal twin studies. Proc Natl Acad Sci USA 2016;113:E500-8.
- 142. Auer R, Vittinghoff E, Yaffe K et al. association between lifetime marijuana use and cognitive function in middle age: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. JAMA Intern Med 2016; 176:352-61.
- 143. Hall W, Lynskey M. Long-term marijuana use and cognitive impairment in middle age. JAMA Intern Med 2016;176:362-3.
- 144. Schreiner AM, Dunn ME. Residual effects of cannabis use on neurocognitive performance after prolonged abstinence: a meta-analysis. Exp Clin Psychopharmacol 2012;20:420-9.
- 145. Morgan CJ, Schafer G, Freeman TP et al. Impact of cannabidiol on the acute memory and psychotomimetic effects of smoked cannabis: naturalistic study. Br J Psychiatry 2010;197:285-90.
- 146. Morgan CJ, Gardener C, Schafer G et al. Sub-chronic impact of cannabinoids in street cannabis on cognition, psychotic-like symptoms and psychological well-being. Psychol Med 2012;42:391-400.
- 147. Pope HG Jr, Gruber AJ, Hudson JI et al. Early-onset cannabis use and cognitive deficits: what is the nature of the association? Drug Alcohol Depend 2003;69:303-10.
- 148. Meier MH, Hill ML, Small PJ et al. Associations of adolescent cannabis use with academic performance and mental health: a longitudinal study of upper middle class youth. Drug Alcohol Depend 2015;156:207-12.
- 149. Cerdá M, Moffitt TE, Meier MH et al. Persistent cannabis dependence and alcohol dependence represent risks for midlife economic and social problems: a longitudinal cohort study. Clin Psychol Sci (in press).

- 150. Silins E, Horwood LJ, Patton GC et al. Young adult sequelae of adolescent cannabis use: an integrative analysis. Lancet Psychiatry 2014;1:286-93.
- 151. Stiby AI, Hickman M, Munafo MR et al. Adolescent cannabis and tobacco use and educational outcomes at age 16: birth cohort study. Addiction 2015;110:658-68.
- Leweke FM, Piomelli D, Pahlisch F et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2012;2:e94.
- 153. McGuire P A double-blind, randomised, placebo-controlled, parallel group trial of cannabidiol as adjunctive therapy in the first line treatment of schizophrenia or related psychotic disorder. Presented at the 5th Schizophrenia International Research Society Conference, Florence, April 2016.
- Abrams DI, Jay C, Shade S et al. Cannabis in painful HIV-associated sensory neuropathy. A randomized placebo-controlled trial. Neurology 2007; 68:515-21.
- 155. Andreae MH, Carter GM, Shaparin N et al. Inhaled cannabis for chronic neuropathic pain: a meta-analysis of individual patient data. J Pain 2015; 16:1221-32.
- Patti F, Messina S, Solaro C et al. Efficacy and safety of cannabinoid oromucosal spray for multiple sclerosis spasticity. J Neurol Neurosurg Psychiatry 2016;87:944-51.
- 157. Koppel BS, Brust JCM, Fife T et al. Systematic review: Efficacy and safety of medical marijuana in selected neurologic disorders: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2014;82:1556-63.

- Brust JC, Ng SK, Hauser AW et al. Marijuana use and the risk of new onset seizures. Transactions of the American Clinical and Climatological Association 1992;103:176-81.
- 159. Gloss D, Vickrey B. Cannabinoids for epilepsy. Cochrane Database Syst Rev 2012;6.
- Porter BE, Jacobson C. Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav 2013;29:574-7.
- Press CA, Knupp KG, Chapman KE. Parental reporting of response to oral cannabis extracts for treatment of refractory epilepsy. Epilepsy Behav 2015;45:49-52.
- Friedman D, Devinsky O. Cannabinoids in the treatment of epilepsy. N Engl J Med 2015;373:1048-58.
- Gage SH, Hickman M, Zammit S. Association between cannabis and psychosis: epidemiologic evidence. Biol Psychiatry 2016;79:549-56.
- 164. Large M. The need for health warnings about cannabis and psychosis. Lancet Psychiatry 2016;3:188-9.
- 165. Hasin DS, Wall M, Keyes KM et al. Medical marijuana laws and adolescent marijuana use in the USA from 1991 to 2014: results from annual, repeated cross-sectional surveys. Lancet Psychiatry 2015;2:601-8.
- 166. Shi Y, Lenzi M, An R. Cannabis liberalization and adolescent cannabis use: a cross-national study in 38 countries. PLoS One 2015;10:e0143562.

DOI:10.1002/wps.20341