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N-acetylcysteine (NAC), a glutathione precursor and glutamate modulator, has been shown to possess various
clinically relevant psychopharmacological properties. Considering the role of glutamate and oxidative stress in
depressive states, the poor effectiveness of antidepressant drugs (ADs) and the benefits of drug combination
for treating depression, the aim of this study was to explore the possible benefit of NAC as an add on drug to
treat major depression. For that matter we investigated the combination of subeffective and effective doses
of NAC with subeffective and effective doses of several ADs in the mice tail suspension test. The key finding of
this study is that a subeffective dose of NAC reduced the minimum effective doses of imipramine and
escitalopram, but not those of desipramine and bupropion. Moreover, the same subeffective dose of NAC
increased the minimum effective dose of fluoxetine in the same model. In view of the advantages associated
with using the lowest effective dose of antidepressant, the results of this study suggest the potential of a clinically
useful interaction of NACwith imipramine and escitalopram. Further studies are necessary to better characterize
themolecular basis of such interactions, aswell as to typify the particular drug combinations thatwould optimize
NAC as an alternative for treating depression.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Major depression (MD) is the commonest psychiatric disorder,
estimated to affect as much as 120 million people worldwide
(Hashimoto, 2011). Chief reasons for failure with antidepressant
treatments are thought to include the lack of proper response, the
considerable disabling adverse effects of ADs drugs, the length
of psychiatric history, and the quality of patient–physician relation-
ship (Keitner et al., 2006; Pampallona et al., 2004). While the need
for developing more effective drugs is a consensus, alternative strat-
egies to improve the clinical response have been explored, especially
in refractory cases. Antidepressant augmentation (e.g., ADs plus
pindolol, lithium, and buspirone) and combination (two ADs with
ino-3-(3-hydroxy-5-methyl-
ystem; ERK1/2, extracellular
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different mechanisms of action) are commonly used as such strate-
gies (Connolly and Thase, 2011; Linde et al., 2011; Rocha et al.,
2012) and are advocated to improve the prognosis of patients refrac-
tory to standard treatment protocols (Bobo et al., 2011;Martín-López et
al., 2011; Rojo et al., 2005), as well as those with marked suicidal idea-
tion (Zisook et al., 2011).

In linewith themonoaminergic hypothesis of depression, themech-
anism of action of the majority of current ADs aims to increase/restore
neurotransmitter synaptic levels. The so called glutamate hypothesis
put forward at the early 90s (Trullas and Skolnick, 1990) aired the
neurobiological basis of depression, raising expectations to decipher
the gaps present at the more established monoaminergic hypothesis.
The report that ketamine, a glutamate NMDA receptor antagonist,
improves depressive symptoms in treatment resistant patients can be
viewed as a landmark in this focus shift (Berman et al., 2000), with
evidence pointing to the role of glutamate in mood disorders rapidly
accumulating (Hashimoto, 2011; Tokita et al., 2012). The timing for
clinical response with ketamine is in itself impactful: antidepressant
effects are observed 120 min after a single intravenous administration,
and effects were documented to last for one week (Zarate et al., 2006).
Even though ketamine falls short from the ideal drug, its clinically rele-
vant, though transient (Jordan et al., 2006), antidepressant effects were
crucial to reinforce the concept that drug-induced glutamate modulation
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may be a promising possibility to improve the treatment of depression.
Sanacora et al. (2012, p. 64) in fact called for the recognition of glutamate
as “the final common pathway of therapeutic treatment for depression
and other mood/anxiety disorders”.

N-acetylcysteine (NAC), long available in the clinic as a mucolytic
and antidote for acetaminophen poisoning, also induces clinically useful
effects in a variety of psychiatric conditions (Dean et al., 2011). The basis
for NAC psychopharmacological effects is suggested to be related to its
antioxidant properties, aswell as itsmodulation of glutamate pathways
(Baker et al., 2003; Berk et al., 2008a). Relevant to this study are the
reports of NAC benefits as an add-on antidepressant treatment in bipo-
lar patients (Berk et al., 2008b, 2011; Magalhães et al., 2011). Notewor-
thily, good tolerability and lack of significant side effects, based upon
toxicological and pharmacokinetic data, are all well established for
NAC (Whyte et al., 2007), which is available in the market at low cost
formulas. Though specific trials for antidepressant effects in unipolar
depression are still lacking, NAC shows antidepressant-like activity in
several pre-clinical models, including the rat forced swimming test
(FST) (Ferreira et al., 2008), mice tail suspension test (TST) (Linck et
al., 2012), FST in bulbectomized rats (Smaga et al., 2012), and was
recently reported to reverse the stress-induced sweet food consump-
tion decrease in rats (interpreted as an animal correlate of anhedonia)
(Arent et al., 2012). The results of these preclinical data were associated
with the reduction of oxidative stress (Arent et al., 2012; Ferreira et al.,
2008; Smaga et al., 2012), and the AMPA glutamate receptors (Linck et
al., 2012).

Considering the increasing attention given to the role of gluta-
mate and oxidative stress in depressive states, the poor outcome
of ADs and the advocated superiority of drug combination for
treating depression, the aim of this study was to explore the valid-
ity of NAC as an add-on medication for MD. We hypothesized that
positive interactions could result by combining NAC with ADs,
depending on specificities of ADs mechanisms of action. We here
tested different doses of NAC in combination with desipramine,
bupropion, imipramine, escitalopram, and fluoxetine, in the mice
tail suspension test.

2. Materials and methods

2.1. Animals

Experiments were performed with male (CF1) 2-month-old albino
mice (40–45 g) obtained from Fundação Estadual de Produção e
Pesquisa emSaúde (FEPPS).Miceweremaintained at the Pharmacology
Department animal facility under controlled environmental conditions
(22±1 °C, 12 h-light/dark cycle, free access to food [Nuvilab CR1] and
water) for at least two weeks before the experiments. All procedures
were carried out according to institutional policies on experimental
animals handling; the project was approved by the University ethics
committee (approval #19981).

2.2. Drugs

N-acetylcysteine (NAC), imipramine, bupropion and desipra-
mine were acquired from Sigma-Aldrich (St Louis, Missouri, USA).
Escitalopram and fluoxetine were used from commercial sources
(Lexapro®, H. Lundbeck A/S Laboratories, RJ, Brazil and Daforin®,
Laboratório EMS, SP, Brazil). All drugs were solubilized in saline
(NaCl 0.9%), used as the negative control; injection volume
was 0.1 ml/10 g of body weight. All drugs were administered
intraperitoneally.

2.3. Tail suspension test (TST)

We used the tail suspension test method as described by Steru et
al. (1985). In a soundproof room, mice were suspended by the tail
with a piece of adhesive tape applied to a wooden frame 50 cm
above the worktable. Mice were observed for 6 min, during which
the immobility time was recorded with a stopwatch; mice were
considered immobile when hanging passively and motionless. Animals
were immediately returned to their housing after the experiments.

Effective doses of NAC and standard ADs in the mice TST have been
previously identified in our laboratory (Linck et al., 2012); subeffective
doses were defined by pilot experiments, in which doses increasingly
lower than those found to significantly reduce immobility were used.
The experiment was designed to verify if subeffective doses of NAC
combined with subeffective and/or effective doses of ADs resulted in
effects different from ADs alone. NAC 5.0 mg/kg was administered 1 h
prior to test; desipramine (2.5, 5.0 and 10.0 mg/kg), bupropion
(1.0, 2.0, and 10.0 mg/kg), imipramine (5.0, 10.0 and 20.0 mg/kg),
escitalopram (1.0, 2.0 and 3.0 mg/kg), and fluoxetine (24.0, 28.0 and
32.0 mg/kg) were administered 30 min prior to test (n=8–10). The
time courses for drug administrations were chosen due to pharmacoki-
netic reasons (Ferreira et al., 2008). Pilot experiments showed that NAC
was effective 1 h after administration, and antidepressants were effective
within 30 min.

A second experiment was designed to evaluate the effects of com-
bining the effective dose of 25 mg/kg NAC in the TST (Linck et al., 2012)
with effective doses of imipramine and escitalopram in the same test.
2.4. Locomotion

Locomotion was assessed in activity cages (45×25×20 cm,
Albarsch Electronic Equipments, Porto Alegre, Brazil) equipped
with four parallel photocells. The number of crossings was auto-
matically recorded for 15 min, considering the first 5 min as
exploration and the final 10 min as locomotion (Linck et al., 2009).
The doses of standard ADs (administered 30 min prior to test) and
NAC (administered 1 h prior to test) were the same as those used for
the TST.
2.5. Statistical analysis

Data were analyzed by one- or two-way analysis of variance
(ANOVA), followed by Newman–Keuls post hoc test. GraphPad Prism
5.0 for Windows was used for the statistical analysis. Statistical signifi-
cance was set at pb0.05. Values were expressed as mean and standard
error of mean.
3. Results

Fig. 1(A–E) shows that 5 mg/kg NAC alone did not decrease
immobility in the TST. No significant interaction was observed for
the combination of this subeffective dose of NAC with progressive
doses of desipramine (F3,67=0.84, p>0.05) (Fig. 1A) or bupropion
(F3,73=0.86, p>0.05) (Fig. 1B). However, statistically significant
interactions were verified for the combination of this subeffective dose
of NAC with progressive doses of imipramine (F3,68=5.6, pb0.001)
(Fig. 1C), escitalopram (F3,65=3.92, pb0.01) (Fig. 1D), or fluoxetine
(F3,66=3.75, pb0.01) (Fig. 1E). The interaction is such that the combina-
tionwithNAC decreased theminimumeffective doses of imipramine and
escitalopram, while increased the minimum effective dose of fluoxetine.

Fig. 2 shows that the combination of 25 mg/kg NAC, a dose that
diminishes immobility at the TST, with likewise active doses of
imipramine (Fig. 2A) or escitalopram (Fig. 2B) did not alter the effect
of any of the drugs alone (p>0.05).

None of the drugs at doses used in TST experiments interfered
with mice locomotion (F12,90=1.77, p>0.05 for antidepressants;
F2,21=0.302, p>0.05 for NAC) (data not shown).



Fig. 1. Effects of a subeffective dose of N-acetylcysteine (NAC, 5 mg/kg) combined with progressive doses of (A) desipramine (n=8–10), (B) bupropion (n=7–13), (C) imipramine
(n=8–11), (D) escitalopram (n=7–11), and (E) fluoxetine (n=8–10). Data represent mean+SEM. *pb0.05, **pb0.01, ***pb0.001 compared to saline–saline; #pb0.01 for the
comparisons shown. Two-way ANOVA/Newman–Keuls.
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4. Discussion

The key finding of this study is that a dose of NAC devoid of
antidepressant-like effects in the mice TST, a model with established
predictive value (Willner et al., 2003), reduces the minimum effective
doses of imipramine and escitalopram, but not those of desipramine
and bupropion in the same model. Moreover, the same subeffective
dose of NAC increases the minimum effective dose of fluoxetine.
Considering the advantages consequent to lowering antidepressant
effective doses the results of this study suggest a potentially clinical
useful interaction of NAC with imipramine and escitalopram.

Highlighting the role of glutamate in depressive states and themode
of action of various classes of ADs, it has been shown that NMDA antag-
onists not only possess antidepressant activity but also potentiate the
effects of standard ADs (Maj et al., 1992; Petrie et al., 2000; Trullas and
Skolnick, 1990). In comparison with known NMDA antagonists that
show antidepressant effects, but also a range of unwanted effects that
hinder its clinical use, given its safety and tolerability profile (Whyte et
al., 2007) NAC may be an ideal candidate to translate to clinical setting
the concept of potentiating ADs effects with glutamate antagonists.
The availability of glutamate to its various receptors is primarily
determined by the astrocytic sodium-dependent glutamate transport
(Diamond, 2001; Dunlop, 2006; Huang and Bergles, 2004; Huang et al.,
2004). Glutamate availability can be additionally tuned by the astrocytic
cystine–glutamate exchanger, a mechanism of non-vesicular glutamate
release into the extrasynaptic compartment (Baker et al., 2002). By
controlling extrasynaptic glutamate levels, the cystine–glutamate
exchanger modulates group II metabotropic glutamate autoreceptors,
ultimately leading to reduced glutamate synaptic release (Moran et
al., 2005). It is through the astrocytic cystine–glutamate exchanger
that NAC is thought to modulate glutamate pathways in a clinically rel-
evant manner (Baker et al., 2002; Dean et al., 2011). This subtle but ef-
fective regulation of glutamate release would be beneficial to CNS
diseases accompanied by hyperglutamatergic states, such as addiction
(Schmaal et al., 2012), schizophrenia (Jordan et al., 2006), and depres-
sion (Sanacora et al., 2012).

It has been suggested that, despite differences in primary mecha-
nisms of action, ADs might work by stabilizing glutamate neurotrans-
mission in key brain areas, such as the hippocampus (Bonanno et al.,
2005; Hashimoto, 2011; Sanacora et al., 2012). Our data show that
NAC interacts selectively with different ADs, indicating that specificities
in how different agents affect glutamate function are of relevance.

image of Fig.�1


Fig. 2. Effects of an active dose of N-acetylcysteine (NAC, 25 mg/kg) combined
with active doses of (A) imipramine (20 mg/kg, n=8), and (B) escitalopram
(3 mg/kg, n=8). Data represent mean+SEM. ***pb0.001 compared to saline-saline.
One-way ANOVA/Newman–Keuls.
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Barbon et al. (2006) concluded that desipramine exerts moderate but
selective effects on glutamate receptor expression and editing. FST-
induced increase in glutamate levels (mouse dorsolateral prefrontal
cortex) was reversed by acute desipramine administration (Kim et al.,
2010). Relevant to this discussion, Bouron and Chatton (1999) showed
that in cultured hippocampal neurons desipramine rapidly enhanced
the spontaneous vesicular release of glutamate. The effects of
bupropion in glutamate transmission are less clear. While it has
been shown that bupropion inhibits glutamate release in rat cere-
bral cortex nerve terminals (Lin et al., 2011), acute and chronic
exposure of rats to bupropion results in enhanced striatal overflow
of glutamate (Santamaría and Arias, 2010). The increase in gluta-
mate release induced by these two ADs may be the basis for their
lack of interaction with NAC, which decreases glutamate release.

Though the mechanism of action of imipramine is related to the
blockade of serotonin and norepinephrine reuptake, it has been
shown that it also induces marked changes in glutamate: imipra-
mine decreases the spontaneous release of glutamate in rats
pre-frontal cortex (Tokarski et al., 2008), decreases potassium-
stimulated glutamate outflow (Michael-Titus et al., 2000), and,
chronically administered, reduces radioligand binding to NMDA re-
ceptors in the same area (Nowak et al., 1993, 1996; Skolnick et al.,
1996). An increased expression of AMPA receptors combined with
a reduced function of NMDA have been postulated as part of imip-
ramine mechanism of action (Martinez-Turrillas, 2002; Skolnick,
1999). Escitalopram, the S isomer of citalopram, is a selective inhib-
itor of serotonin reuptake extensively used in the clinic (Höschl
and Svestka, 2008). Its effect in the mice FST was shown to be de-
pendent on the inhibition of NMDA receptors (Zomkowski et al.,
2010). Microdialysis experiments indicates that citalopram (acute
or for two weeks) significantly inhibited the release of glutamate
and aspartate (Gołembiowska and Dziubina, 2000), which is likely
to occur with escitalopram at lower doses. The overall effect of
these ADs in reducing glutamate transmission is coherent with
the leftward shift observed with the combination with NAC.
The effects of fluoxetine in glutamate transmission seem, at
best, unclear. It was found to increase astrocytic glutamate efflux
(mouse prefrontal cortex acute slices, Schipke et al., 2011), as
well as the expression of vesicular glutamate Transporter-1
(VGLUT1) when chronically administered (C57BL/6 but not in the
BALB/c mice, Farley et al., 2012). Selective changes in glutamate
receptor subunits of NMDA and AMPA receptors are also docu-
mented in rodents (Ampuero et al., 2010; Barbon et al., 2006).
Glutamate signaling through extracellular signal-regulated kinase
1 and 2 (ERK1/2) in astrocytes was shown to be abolished by fluox-
etine (Li et al., 2011b). Our data indicates that, in the presence
of NAC, higher doses of fluoxetine are required for a statistically
significant reduction of immobility in the TST, indicating that di-
minished glutamate release and/or postsynaptic glutamate recep-
tors activation impairs fluoxetine activity. A possible reading is
that an adequate level of synaptic glutamate is required for opti-
mizing fluoxetine effects.

Counteracting oxidative stress (Berk et al., 2008a; Ferreira et al.,
2008) and modulating glutamate (Dean et al., 2011; Linck et al.,
2012; Schmaal et al., 2012) are the two key NAC properties under
consideration regarding its postulated antidepressant effects. The
antidepressant-like effects of NAC in bulbectomized rats (Smaga et
al., 2012) and unpredictable chronic stress (Arent et al., 2012) were
accompanied by reduced markers of oxidative stress, and it has
been documented that significant oxidative stress exist after FST
and accompanies human depressive states (Behr et al., 2012;
Ferreira et al., 2012). Nevertheless, the notion that antidepressant ef-
fects are the result of antioxidative properties is contradictory to the
data showing that a single ketamine administration increased lipid
peroxidation, nitrite content and catalase activity, while decreased
glutathione levels in mice prefrontal cortex (da Silva et al., 2010).

It has been shown that acute stress (foot shock, tail pinch, forced
swimming, and restraint) induced marked increase in glutamate
release (Musazzi et al., 2010; Popoli et al., 2012). Specifically for
foot shock-induced stress, patch-clamp recordings of pyramidal
neurons in the prefrontal cortex revealed that stress increased
glutamatergic transmission through both pre- and postsynaptic
mechanisms; moreover, various antidepressants counteracted this
glutamate increase (Musazzi et al., 2010). Though subeffective
doses of imipramine and escitalopram became active when com-
binedwith NAC, no significant interaction in terms of reduced immo-
bility was observed when associating effective doses of any of these
antidepressants with NAC. It has been shown that a single dose of
NAC reduces the glutamate/creatine ratio in the anterior cingulate
cortex in cocaine addicts, but not in healthy subjects (Schmaal et
al., 2012). Likewise, intra-accumbens infusion of cystine was
shown to restore extracellular glutamate levels in cocaine with-
drawn rats, but not in control rats (Baker et al., 2002). Coherently
with NAC subtle modulation of glutamate levels, our data also sug-
gest that NAC modifies glutamate levels in a relevant manner only
whenever glutamate homeostasis is disturbed.

We showed that the effect of NAC in the mice TST was partially
reversed by pretreatment with NMDA and completely reversed by
the AMPA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl benzo[f]
quinoxaline-2,3-dione (NBQX), supporting the hypothesis that the
modulation of glutamate by NAC is a crucial component of NAC anti-
depressant properties (Linck et al., 2012). It was likewise shown that
NBQX attenuated ketamine-induced antidepressant-like behaviors,
and the regulation of hippocampal phosphorylated GluR1 AMPA
subunit (Maeng et al., 2008). Accordingly, it has been speculated
that enhanced AMPA receptor activity is key to the spine morpho-
genesis and rapid antidepressive response to ketamine (Li et al.,
2011a). Interestingly, it has been argued that the modulation
of glutamatergic synapses trough potentiation of AMPA function is
important for the clinical effects of electroconvulsive shock treat-
ment (Tokita et al., 2012). Taken together, the data point to

image of Fig.�2
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glutamate modulation as the key mechanism for NAC antidepressant
effects as well as for the interactions of NAC with the antidepressants
here reported.

The drawbacks of antidepressant treatments have been extensively
discussed, among which are the long latency for clinically significant
changes in mood, the less than desirable therapeutic response, and
the range of side effects often determining poor adhesion to treatment
(Dupuy et al., 2011). This study presents various limitations. With the
experimental design used in this study no significant increase in
reduced immobility was observed with the combination of ADs with
NAC, though the study is obviously not exhaustive regarding
dose–effect curves or NAC/antidepressants dose combinations
(e.g., isobolograms). Moreover, the TST is inadequate to assess if
the interaction of NAC with imipramine and escitalopram would
result in shorter latencies for antidepressant effects. Nevertheless,
the data suggest a potential benefit in antidepressant treatment
effectiveness with NAC as add on medication, either resulting
from the use of lower doses with diminished side effects and/or a
potential shortening of the latency to clinical response suggested
by the apparent key role of AMPA glutamate receptors for a rapid
antidepressant response.

5. Conclusions

This study shows a differential interaction of N-acetylcysteine and
antidepressants agents with distinct pharmacodynamics basis. The
positive interaction with imipramine and escitalopram is of special
clinical interest. Further studies are necessary to better characterize
the molecular foundation underlying the positive interactions here
identified, as well as to typify the particular drug combinations that
would provide optimized alternatives for treating depression.
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