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COGNITIVE CONTROL AND THE DOPAMINE D2-LIKE
RECEPTOR: A DIMENSIONAL UNDERSTANDING

OF ADDICTION

Stephanie M. Groman, M.A.1 and J. David Jentsch, Ph.D.1,2!

The phenotypic complexity of psychiatric conditions is revealed by the
dimensional nature of these disorders, which consist of multiple behavioral,
affective, and cognitive dysfunctions that can result in substantial psychosocial
impairment. The high degree of heterogeneity in symptomatology and
comorbidity suggests that simple categorical diagnoses of ‘‘affected’’ or
‘‘unaffected’’ may fail to capture the true characteristics of the disorder in a
manner relevant to individualized treatment. A particular dimension of
interest is cognitive control ability because impairments in the capacity to control
thoughts, feelings, and actions are key to several psychiatric disorders. Here, we
describe evidence suggesting that cognitive control over behavior is a crucial
dimension of function relevant to addictions. Moreover, dopamine (DA)
D2-receptor transmission is increasingly being identified as a point of
convergence for these behavioral and cognitive processes. Consequently, we
argue that measures of cognitive control and D2 DA receptor function may be
particularly informative markers of individual function and treatment response
in addictions. Depression and Anxiety 0:1–12, 2011. rr 2011 Wiley Periodicals, Inc.
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INTRODUCTION
Mental disorders are multidimensional syndromes,
characterized by a collection of symptoms that often
span conceptually unrelated behavioral and cognitive
domains. Though classification of these symptoms is
typically categorical, with the symptom being ‘‘present’’
or ‘‘absent’’ in an individual, and the symptoms
‘‘summing’’ to a syndromal category, a dimensional
analysis of symptomatology may provide advantages in
understanding the biological basis of mental disorders.
Symptom dimensionality may be a fundamental link

for understanding interindividual differences in
response to treatment. Specifically, variation in symp-
tom cluster and severity may explain why one
intervention is highly beneficial for some individuals
but with little-to-no therapeutic effect for others. The
lack of correlation between treatment strategies and
psychosocial outcomes is prevalent in individuals
diagnosed with a variety of psychiatric disorders, such
as schizophrenia, depression, or addiction.
The development of effective and targeted treat-

ments relies on advancements in basic research directed

at elucidating the neurochemical abnormalities that
underlie these disorders in order to develop novel
pharmacological agents. However, the translational of
basic science results into pharmacological medicine
and effective treatments has been fairly limited. This,
too, may be a consequence of dichotomizing these
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disorders and symptoms, obfuscating the biological
variability that exists within a disorder.
One potential strategy that has been proposed as a

method to bridge the gap between basic scientific
results, pharmacological development, and therapeutic
strategies is to deconstruct disorder-specific symptoms
into simpler and more refined phenotypes. There are
numerous phenotypes that could be used to study
specific dimensions of mental disorders (sensory-
gating, feedback sensitivity, etc.); however, aberrant
cognitive control processes have been consistently
proposed as core features of several psychiatric
disorders.
Here, we discuss the evidence that cognitive control

represents an important dimension of mental disorders.
Although this review focuses on the use of cognitive
control to better understand addictions, the same
principles can be extended to other mental disorders,
including but not limited to anxiety, depression, and
schizophrenia. In fact, deviations in cognitive control
processes have been reported in individuals diagnosed
with mood disorders, suggesting that cognitive control
may be one important dimension of these disorders.
We propose that investigating dimensions of disorders,
such as cognitive control, can further our neural
understanding of psychopathologies and assist in
developing scientifically based individualized treatment
strategies.

PHENOTYPIC OVERLAP
BETWEEN ADDICTIONS,

IMPULSIVITY, AND COGNITIVE
CONTROL

Substance dependence is defined as compulsive and
inflexible drug-seeking and -taking, despite the nega-
tive consequences associated with that behavior. This
concept likely extends to so-called process addictions,
as there is evidence that similar forms of compulsive
behaviors can develop in response to nondrug reinfor-
cers, including food[1] and sex.[2] Irrespective of the
goal that drives the addiction, the behavioral sequela of
addictions are similar, suggesting that a common set of
biological substrates contribute to this set of psychia-
tric phenotypes.
Key to our concepts of drug abuse and dependence

are impulsive and compulsive patterns of drug
seeking. For example, persistent use of a substance
despite knowledge of the long-term detrimental
consequences may mirror the myopic characteristics
of impulsivity (wherein immediate gratification
outweighs delayed negative consequences). Further-
more, reduced ability to voluntarily cease drug use
can be viewed as failed ability to exert inhibitory
control over compulsive behaviors. Indeed, several
lines of evidence have implicated dimensions of

impulsivity and cognitive control as core features of
addictions.[3,4]

Impulsivity is a construct that describes a set of
behaviors that, in extreme forms, have the potential to
be maladaptive, including difficulty resisting urges,
hasty or risk-prone decision making, and reduced
sensitivity to delayed outcomes.[5] There are several
studies that implicate aspects of impulsivity in addic-
tions.[6–10] Specifically, higher levels of trait impulsive-
ness are present in individuals dependent upon
substances[7,11–14] or individuals who are affected by
other addictions.[15,16]

Chronic exposure to drugs of abuse has been
reported to produce an enhancement in impulsive-like
responding in animals,[17–19] implicating drug use as
one mechanism by which high impulsivity manifests.
However, high-trait impulsivity prior to drug use has
been proposed as a risk factor for the development of
substance dependence.[20–22] Variability in impulsive-
like behaviors in rodents has been found to predict
future self-administration of drugs[23–26] and is asso-
ciated with a punishment-resistant, drug-taking phe-
notype.[27] Therefore, high impulsivity may be a
consequence of substance use as well as an indicator
of susceptibility for developing substance dependence.
Individual differences in impulsive temperament are

likely related to variation in cognitive control, which is
defined as the ability to exert volitional control over
one’s thoughts, feelings, and actions.[28] It is itself a
multidimensional construct, involving several psycho-
logical processes and neural systems. Because cognitive
control involves the utilization of representations of
goals and/or abstract rules to guide behavior, it
necessarily implicates several higher order processes,
such as working memory, cognitive flexibility, response
inhibition, and goal-directed attention. Relatively poor
function in any of these domains can contribute to
inflexible behaviors and/or mental states, and conse-
quently underlie dimensions of a number of psychiatric
disorders, including (but certainly not limited to)
addictions.[29–33] Indeed, there is growing evidence
that impulsivity and cognitive control are directly
related,[34–36] suggesting that impulsivity may represent
a higher order phenotypic consequence of extreme
deficits in multiple dimensions of cognitive control.
As predicted, cognitive control deficits have been

observed in individuals dependent upon a variety of
substances,[29–33] as well as in animals chronically
exposed to drugs of abuse,[37–39] indicating that the
materialization of these deficits may, in part, be due to
chronic drug use/exposure. However, deficits in
cognitive control processes that precede drug use may
themselves influence the development of dependence.
Children who are at high risk for the development of
substance abuse, based upon familial patterns of
alcoholism,[40] have purported cognitive control
impairments prior to any drug use.[41,42] Furthermore,
variation in cognitive control processes correlates with
behavioral predictors of substance abuse, such as
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severity of drug use and quantity of drug experimenta-
tion,[42] and preclinical predictors of drug reinforce-
ment.[43]

Although cognitive control deficits are not part of
the current diagnostic criteria for addictions or other
psychiatric disorder, they have been proposed to be
defining characteristics of addictions and to be both an
indicator of susceptibility to the condition and a target
of effective treatment that reduce cognitive impair-
ments.[3,44,45] Indeed, pharmacological treatments that
are known to enhance cognitive control have also been
reported to reduce symptoms in individuals affected by
addictions,[46–48] and performance on tasks of cognitive
control correlates with predictors of sobriety,[49–51]

implicating impulsivity and cognitive control as
important dimensions that directly influence the ability
of individuals to cease substance use.[3]

The high degree of overlap between cognitive
control, impulsivity, and behavior addictions suggest
that these processes are governed by similar over-
lapping mechanisms. Indeed, there is substantial
evidence that implicates the dopaminergic system
within the corticostriatal circuit as the point of
convergence for these behavioral and cognitive pro-
cesses.

CORTICOSTRIATAL CIRCUIT AS A
COMMON NEURAL PATHWAY

Anatomical and biochemical studies examining the
anatomical basis of cognitive control, impulsivity, and
behavior addictions have independently and conver-
gently implicated brain nuclei within the corticostriatal
circuit as critical brain regions of these phenotypes.
The corticostriatal circuit is composed of a series of
segregated loops between cortical, striatal, and mid-
brain structures that are topographically organized:
limbic and associative information arising from the
prefrontal cortex innervates the medial portion of the
striatum, whereas sensory and motor information from
the premotor and motor cortex innervate the lateral
portion of the dorsal striatum.[52] The topographical
organization is retained in the striatal projections to the
pallidum and substantia nigra, which finally relay back
to the cortex via the thalamus.[53] Because of these
parallel looping projections, neural signals embedded
in this circuit are susceptible to modulation at any of
these points and alterations, biochemically and anato-
mically, in any of these brain regions influence the
circuit, and therefore the signal as a whole.
Anatomical, biochemical, and functional alterations

within the corticostriatal circuitry have been implicated
in both substance and process addictions. Specifically,
prefrontal gray matter density is lower in substance-
dependent individuals[54–62] and morbidly obese
individuals.[63,64] Functional and metabolic studies
have also reported reduced connectivity between
prefrontal and subcortical structures[65,66] and altered
glucose metabolism in prefrontal[67–70] and striatal

regions[70,71] in substance-dependent individuals. Simi-
lar abnormalities in morphology and glucose metabo-
lism have been reported in animals exposed to
drugs,[72–76] implicating drug use as the mechanism
by which the neural alterations observed in substance-
dependent individuals manifest.
Although no studies to date have directly examined

whether variation in corticostriatal integrity is predic-
tive of future addictions, reduced gray matter in cortical
and subcortical brain nuclei are present in alcohol-naı̈ve
adolescents at high risk for substance dependence.[77]

Additionally, animal studies have provided evidence that
experimentally induced damage to the prefrontal cortex,
prior to drug exposure, enhances the acquisition and
performance of drug self-administration.[78] Therefore,
preexisting variation in corticostriatal integrity may
directly influence drug reinforcement, which may
eventually develop into substance dependence.
Similar brain regions within the corticostriatal circuit

have been implicated in impulsivity and impulsive-like
behaviors: individuals with damage to the ventral and
orbital frontal regions consistently report higher levels
of impulsivity,[79,80] with analogous results being
observed in animals with lesions to the prefrontal
cortex[81] and striatal regions.[82,83] Further, more
relatively small deviations in corticostriatal integrity
have been reported to associate with impulsivity.
Specifically, gray matter density within the prefrontal
cortex and ventral striatum correlates with self-report
levels of impulsivity[84,85] and delay discounting func-
tions[86] in unaffected individuals, implicating corticos-
triatal integrity as the anatomical mechanism for
explaining impulsivity.
The prefrontal cortex has been well established as

being essential for several dimensions of cognitive
control, as damage to this region is associated with
impairments in response inhibition,[87–90] working
memory,[91–93] attention,[94] and behavioral/cognitive
flexibility.[95–98] However, similar deficits have been
reported in animals following lesions to the stria-
tum,[82,99–101] indicating that these processes depend
upon the coordinated activity of linked corticostriatal
network. Indeed, functional imaging studies have
reported activation of several corticostriatal–brain
nuclei during tasks of working memory[102] and
behavioral flexibility,[103,104] providing evidence that
these processes rely on a large network of corticos-
triatal brain nuclei.
Deficits in cognitive control processes are not

unique to addictions. Individuals diagnosed with
mood disorders, such as depression, bipolar, or
anxiety, have deficits in several domains of cognitive
control[105–108] and abnormalities in corticostriatal-
related nuclei.[109–113] Therefore, abnormalities in
structure and/or function of the corticostriatal circuit
may be the mechanism by which phenotypic variation
in cognitive processes, such as response inhibition or
behavioral flexibility, arise in a number of psychiatric
disorders.
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DOPAMINE AS THE COMMON NEURAL
SUBSTRATE

Brain nuclei of the corticostriatal circuit receive
dopaminergic innervation from midbrain dopamine
(DA) neurons. Specifically, the prefrontal cortex
receives direct dopaminergic projections from mesen-
cephalic dopaminergic neurons and projects back to
DA and GABAergic interneurons within the mid-
brain.[114] In addition to this direct feedback pathway,
the prefrontal cortex also sends excitatory projections
to the striatum, enabling direct control over midbrain-
mediated DA release in the ventral striatum.[115]

Depletion of DA content in the prefrontal cortex
increases extracellular DA levels in the basal gang-
lia[116–119] and DA release in response to reinforcing
stimuli,[120] demonstrating the involvement of prefron-
tal DA in modulating baseline and stimulus-elicited
striatal DA efflux. These neural systems are thought to
contribute to top-down control of the prefrontal cortex
over subcortical DA projections, and dysfunction
within any one of these brain regions alters dopami-
nergic tone in the nuclei that comprise the corticos-
triatal circuit.[115,121] Because of the relationships
between corticostriatal-related nuclei and cognitive
control, impulsivity, and behavior addictions, dopami-
nergic dysfunction within this circuitry is believed to
underlie these phenotypes.
Despite the diverse pharmacological targets of

stimuli with reinforcing and/or rewarding properties,
all have been found to increase DA levels within the
ventral striatum.[122–125] Therefore, DA is believed to
be involved in the incentive value and motivational
properties of rewards,[126] and is implicated in the
neural circuitry of disorders involving abnormal reward
seeking and taking. Although acute administration of
drugs with abuse liability increase striatal DA tone,
lower levels of DA have been found in postmortem
tissue of cocaine- and heroin-dependent indivi-
duals[127–129] as well as in animals chronically exposed
to drugs.[130–135] Studies utilizing in vivo imaging
techniques have found similar dopaminergic altera-
tions, specifically with lower levels of DA, rates of DA
synthesis, and drug-induced DA release being observed
in cocaine-[136–138] and alcohol-dependent indivi-
duals.[139,140]

Although a hypodopaminergic striatal system may be
a consequence of chronic drug use,[135,141] low DA tone
existing before drug use may directly influence drug
taking as well as the progression of dependence.
ADHD patients, who are at a substantially greater risk
for developing substance dependence,[142,143] have
reduced drug-induced striatal DA release.[144,145]

These findings parallel earlier work providing causal
evidence for this relationship in high alcohol-prefer-
ring rats.[146–148] Therefore, low levels of DA may drive
individuals to seek out and obtain rewards that increase
DA levels as a way to compensate for their preexisting
hypodopaminergic state.

Several recent studies have demonstrated that varia-
tion in the DA system underlies impulsivity, such that
individuals that report greater levels of impulsiveness
have greater amphetamine-induced DA release in the
ventral striatum.[149] Furthermore, administration
of the DA precursor L-3,4-dihydroxyphenylalanine
(L-DOPA) can induce impulsive responding in healthy
subjects[150] and in Parkinson’s disease patients.[151]

Preclinical evidence indicates that impulsivity may be,
in part, be mediated by DA’s actions in the striatum:
amphetamine-induced increases in impulsive-like
responding are attenuated following focal DA deple-
tion within ventral and dorsal striatal regions.[152,153]

Thus, the enhanced DA release in the striatum in high
impulsive individuals may be a neurochemical conse-
quence of prefrontal-mediated dysfunction over con-
trol of DA release within the striatum.
The DA system has been broadly implicated in

modulating cognitive control processes. Targeted DA
depletion of the prefrontal cortex and striatum has
been reported to impair performance in several tasks of
cognitive control,[121,154–158] and variation in striatal
DA synthesis has been reported to correlate with
performance on tasks of working memory and beha-
vioral flexibility.[159–162] Although several linear mono-
tonic relationships between DA and cognitive control
have been reported, greater DA tone in prefrontal and
striatal regions can also produce cognitive control
deficits similar to those associated with low DA
tone,[163–165] indicating that the relationship between
DA levels and cognitive control may be non-
linear.[162,164,165] Therefore, deviations in dopaminer-
gic tone within the corticostriatal circuitry may explain
individual variation in cognitive control processes
amongst both clinical and nonclinical populations.[161]

Although a hypodopaminergic state may drive
individuals to seek out and/or obtain rewards that
neurochemically elevate DA levels, cognitive control
may directly modulate this relationship. Rigid or
inflexible behaviors present prior to drug use may
influence the developmental time course of addictions,
predisposing individuals to develop habitual compul-
sive behaviors at a rate much faster than individuals
with normal or high cognitive control function. This
may be due, specifically, to DAs influence on both
these processes, whereby low dopaminergic tone
results in an enhanced drive to obtain rewards as well
as impairing the ability to exert egocentric control over
the very same behaviors that are reinforced by the
persistent use of rewards.

DA D2/D3 RECEPTOR SYSTEM AS A
COMMON BIOCHEMICAL MECHANISM

The functional effects of DA are mediated by two
classes of metabotropic receptors known as the D1- and
D2-like families. D1-like receptors, comprised of
the D1 and D5 receptor subtypes, are Gs coupled
and, when activated, increase adenylate cyclase levels.
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D2-like receptors, comprised of the D2, D3, and D4

receptor subtypes, are Gi coupled and when stimulated,
formation of adenylate cyclase is either decreased or is
unaltered.[166] Both D1- and D2-like receptors are
expressed on postsynaptic terminals in brain nuclei that
receive dopaminergic input; however, D2/3 receptors
are also found presynaptically where they act as
autoreceptors, regulating both DA release and synth-
esis. Because D2-like receptors convey the DA signal
postsynaptically as well as regulate overall dopaminer-
gic tone, alterations to this receptor can have both
profound as well as variable effects on the signaling
profile of this DA. Therefore, the D2-like receptor is of
particular interest in disorders that are believed to be a
result of dopaminergic dysfunction, such as, but not
limited to, addictions.
D2-like receptor availability has been consistently

reported as being lower in individuals dependent on a
variety of substances, such as cocaine,[67] methamphe-
tamine,[12,167] nicotine,[168] opiates,[169] and alcohol,[170–172]

as well as in morbidly obese individuals.[173] The
alterations in D2-like receptor levels seem to, in part,
be mediated by chronic exposure to rewards, as similar
reductions in D2-like receptor levels have been
reported in animals following chronic exposure to
cocaine,[174] alcohol,[175,176] and high caloric food.[177]

However, animals with preexisting low levels of the
D2-like receptor have greater cocaine self-administra-
tion,[25,174] and viral vector-mediated knock down of
D2 receptors has been reported to produce compulsive
eating in mice.[177] Based upon this evidence, low levels
of the D2-like receptor have been proposed to be a
consequence as well as a risk factor for substance use,
and pharmacological manipulations that increase
D2-like receptor function have been proposed as a
possible treatment for substance dependence. Indeed,
there is evidence that increasing levels of D2-like
receptors attenuates alcohol consumption[175] and
cocaine self-administration[178] and that supranormal
levels of the D2-like receptor may act as neuroprotec-
tive factor for individuals with familial alcoholism.[179]

Recent evidence has highlighted the involvement
of the D2-like receptor system in impulsivity and
impulsive-like behaviors. D2-like receptor availability
in the striatum[12] and midbrain[149] negatively corre-
late with self-report levels of impulsiveness. Genetic
studies examining the DRD2 gene have found that
individuals that carry the TaqIA allele, a variant
associated with reduced striatal D2-like receptor
availability,[180] report higher levels of impulsivity[181]

and exhibit steeper discounting of delayed rewards.[182]

The DA D2-like receptor system is involved in
several cognitive processes, most notably behavioral
and/or cognitive flexibility[183–187] and working mem-
ory.[188–190] Pharmacological blockade of D2-like
receptors impairs reversal-learning performance[183,191]

and working memory,[190] with similar results being
found in mice lacking the D2 receptor gene[192,193] and
carriers of the DRD2 TaqIA allele.[194] Although the

mechanism by which the D2-like receptor system
modulates cognitive control processes is unknown,
striatal D2-like receptor availability positively corre-
lates with glucose metabolism in prefrontal regions.[138]

Therefore, improving DA D2-mediated transmission
may directly modulate prefrontal dependent activity,
improving aspects of cognitive control.
A recent study has provided evidence that ties these

behavioral and biochemical processes together, demon-
strating that administration of a D2-like receptor
agonist improves reversal-learning deficits in stimu-
lant-dependent individuals.[195] Therefore, the cogni-
tive control impairments present in individuals with an
addiction may be a behavioral manifestation of
abnormal D2-mediated DA transmission.

D2-LIKE RECEPTOR DYSFUNCTION: A
COMMON SUBSTRATE FOR COGNITIVE
CONTROL, IMPULSIVITY, AND SUBSTANCE
DEPENDENCE

Dysfunction of the D2-like receptor system repre-
sents a common biochemical mechanism underlying
cognitive control, impulsivity, and addictions. Based
upon the presented evidence, we propose that reduc-
tions in D2-like receptor function contribute to the
development of addictions through two primary
mechanisms that are interrelated (see Fig. 1).
First, low D2-like receptor function prior to drug use

results in aberrant positive feedback processing,[187]

resulting in inflexible habitual behaviors. Impairments
in the ability of individuals to exert control over their
behaviors manifests as heightened levels of impulsivity
that promote compulsive consumption of rewards,[25,27]

and eventually, if reward use is continued, lead to the

Figure 1. A theoretical model, based upon the available
evidence, illustrating the relationship between cognitive control,
impulsivity, substance use, and the dopamine D2-like receptor.
This model highlights the circular nature of the relationship as
well as the cross-directional influences that these behavioral and
biochemical phenotypes can have on one and other. The D2-like
receptor system represents the biochemical point of conver-
gence for cognitive control, impulsivity, and substance depen-
dence; therefore, we propose that dysfunction of this receptor
system can act as both an antecedent as well as a consequence of
drug use that directly influences the development of dependence
by altering cognitive control processes.
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development of dependence. Second, chronic intake of
rewards can reduce D2-like receptor function,[174,177]

resulting in aberrant positive feedback integration
which promotes the rapid development of habitual
behaviors and heightened levels of impulsivity that
enhances substance use and, eventually, the develop-
ment of dependence.
Although this review focuses on the vast body of

work that links D2-like receptor dysfunction and
cognitive control with addictions, a large amount of
data indicates the D1-like receptors also play a critical
role in cognitive processes, such as working mem-
ory.[196] Specifically, activation of D1-like receptors,
and not D2-like receptors, is necessary for the delay-
dependent firing of prefrontal neurons during tasks of
working memory.[197] Despite the profound working
memory deficits that are present in substance-depen-
dent populations,[198,199] there is limited evidence that
D1-like receptors are altered in these indivi-
duals.[200,201] Inconsistent results have been found in
animal studies examining the effects of chronic drug
exposure on D1-like receptors.[202–204] Nevertheless,
D1-like receptors are most likely involved in the
rewarding and reinforcing properties of drugs, as
animals with full loss of this receptor fail to self-
administer cocaine.[205] Future studies are needed to
clarify the role of the D1-like receptor with respect to
drug addiction and to determine the distinct and
collective contributions of D1- and D2-like receptors to
addictive-related behaviors.

IMPLICATIONS FOR TREATMENT

Increasing D2-mediated DA transmission represents
a primary target for addiction, acting as a potential
intervention for at-risk individuals as well as a
treatment for those with a debilitating addiction.
In fact, several clinical trials have examined the efficacy
of D2-like receptor agonists for cocaine depen-
dence,[206–208] with most finding little-to-no improve-
ments in short- and long-term measures of sobriety
relative to placebo. Although these results may seem
disheartening, the lack of findings may be due to the
pharmacological profile of D2-like receptor agonists
and/or the symptom heterogeneity that is present in
addictions.
First, pharmacological agonists have tonic or sus-

tained activity at receptors which differs from the
phasic stimulation that occurs under normal physiolo-
gical conditions. It is possible that sustained activation
of receptors by the agonist disrupts neurotransmission
to the same extent that antagonists do, resulting in
behavioral and cognitive impairments commonly re-
ported with D2-like receptor antagonists.
Second, cognitive control deficits and substance

dependence are not completely overlapping; in fact,
cognitive performance of some dependent individuals
is at the level of controls.[30] It may be that individuals
with normal-to-high cognitive abilities show little

or no therapeutic benefit from D2-like receptor
agonists because cognitive deficits do not represent
the principal impairment driving their addiction.
This may, in part, be due to the D2-like receptor.

The efficacy of methadone-replacement therapy for
opiate dependence is mediated by the DRD2 gene,
such that carriers of the TaqIA polymorphism are more
likely to have poorer treatment outcomes compared to
individuals that do not carry the A1 allele.[209]

Furthermore, smokers that have a 141 base-pair
deletion in the promoter region of the DRD2 gene,
which is known to decrease transcriptional efficiency of
the D2 receptor,[210] are more likely to benefit from
nicotine replacement therapies than pharmacological
treatment with buproprion, with the opposite being
true for individuals homozygous for 141 bp inser-
tion.[211]

Based on these studies, the D2-like receptor repre-
sents a potential genetic and biochemical factor
in predicting the efficacy of pharmacological interven-
tions and outcomes for a particular individual.
We suggest that this is driven by the relationship
between D2-like receptors and cognitive control,[187]

whereby individuals with low levels of the D2-like
receptor obtain the greatest therapeutic benefit
from pharmacological agents that enhance cognitive
control and individuals with levels of D2-like receptors
comparable to those of nondependent controls
and normal-to-high levels of cognitive control
would not. Although this theory remains to be tested,
there is evidence that individuals with better reversal-
learning performance have performance decrements in
response to D2-like receptor agonists, whereas those
with poorer reversal learning have performance im-
provements.[162] These studies highlight the potential
benefits that biological factors have in the development
of individualized therapeutic strategies for mental
disorders.

SUMMARY

The evidence presented above provides a biological
mechanism for explaining the discordance between
treatment strategies and efficacy in addiction as it
relates to the dimension of cognitive control. Utilizing
similar dimensional analyses for other psychiatric
conditions may provide insight into the neural deter-
minants that predict treatment efficacy in addition to
improving our conceptual understanding of the biolo-
gical basis of mental disorders.
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