Proceedings of the National Academy of Sciences

Please print all pages of the proof PDF (use “normal quality”). Note the following directions for correcting and returning your proofs. **Important:** For your convenience, this page contains a shortened version of the content in the proof notification e-mail, and some information is not repeated here. Please read the e-mail letter, which will inform you if your article exceeds our page limit.

Text
1) Clearly mark all of your changes and answers to author queries in the margins next to the article text in the proofs;
2) Review and answer ALL author queries (marked in the margins of the text with AQ: A, etc.) that are listed on the query sheet(s);
3) Proofread tables and equations carefully; and
4) Make sure that any Greek/special characters appear correctly throughout the text.

Figures
- Proofs contain low-resolution figures (so proofs can be downloaded and printed quickly). Figure quality will be higher in the printed and online html versions of the journal. Please note any figure quality concerns next to the figure on the proofs.
- Carefully check fig. numbering, color, text labeling, and cropping; if elements are missing from or moved within a figure, or if your color figure does not appear in color in the PDF, please note this on your proofs and send us a printed copy of the correct figure for comparison;
- Replacing, deleting, or resizing color figures will cost $150/figure and replacing a black-and-white figure will cost $25/figure.

Supporting Information
- If you submitted supporting information (SI) to be posted on the PNAS web site, you will receive a PDF proof of the SI in a separate e-mail (to be delivered the next business day).

Within 2 business days, please express mail (by overnight or 2-day delivery, if possible) the following items to the address given below. (WE CANNOT ACCEPT FAXES OF PROOFS OR E-MAILED CORRECTIONS.)
1) The original printed copy of the PDF, including query sheet(s), with your corrections marked in the margins next to the article text;
2) High-quality prints for any corrected figures (we must have prints suitable for scanning even if you submit digital files of the revised figures); and
3) The reprint order form (including the price sheet). You can fax this form to the number listed on it instead of mailing the form back to us. If you have trouble printing the form, it is also available on our web site at “http://www.pnas.org/misc/2006_reprints.pdf”.

Please retain a copy of ALL pages of the proof PDF for your records. Please include your manuscript number with all correspondence.

Thank you.

Return address for proofs:
Attn: PNAS
8621 Robert Fulton Dr., Suite 100
Columbia, MD 21046
pnas@cadmus.com
Tel: 410-850-0500 (Use this number for shipping purposes only; see query A on the Author Queries sheet in your proof PDF for contact information for your article.)

Please note: The date a paper appears online in PNAS daily Early Edition is the publication date of record and is posted with the article text online. All author changes must be made before the paper is published online or will be handled as errata.
A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample

Camila Guindalini, Mark Howard, Kate Haddley, Ronaldo Laranjeira, David Collier, Nik Ammar, Ian Craig, Colin O’Gara, Vivian J. Bubb, Tiffany Greenwood, John Kelsoe, Phil Asherson, Robin M. Murray, Adauto Castelo, John P. Quinn, Homero Vallada, and Gerome Breen

Medical Research Council Social Genetic and Developmental Psychiatry Research Centre, Division of Psychological Medicine, and Addiction Centre, Institute of Psychiatry, King’s College London, London SE5 8AF, United Kingdom; Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil; Department of Physiology, Human Anatomy, and Cell Biology, School of Pharmacy, University of Liverpool, Liverpool L69 7ZX United Kingdom; Unit of Drug and Alcohol Research, Department of Psychiatry, Federal University of São Paulo, 04023–900 São Paulo, Brazil; Department of Psychiatry, University of California at San Diego, La Jolla, CA 92093; and Department of Psychiatry, San Diego Veterans Affairs Healthcare System, La Jolla, CA 92039

Edited by Susan G. Amara, University of Pittsburgh School of Medicine, Pittsburgh, PA, and approved January 17, 2006 (received for review June 8, 2005)

The dopamine (DA) transporter DAT1 is an important regulator of dopaminergic neurotransmission and the major target bound by cocaine in brain. We examined the influence of functional genetic variants in DAT1 on cocaine addiction. Repeat polymorphisms, including a 30-bp variable-number tandem repeat (VNTR) in intron 8 (Int8 VNTR) with two common alleles, were genotyped in cocaine-dependent abusers (n = 699) and in controls with no past history of drug abuse (n = 855) from São Paulo, Brazil. Positive association was observed with allele 3 of the Int8 VNTR and cocaine abuse (allele-wise odds ratio = 1.2, 95% confidence interval = 1.01–1.37, P = 0.036; genotype-wise for 3 homozygote odds ratio = 1.45, 95% confidence interval = 1.18–1.78, P = 0.0008). Population stratification was assessed and did not affect the results. Further haplotypic analyses using additional polymorphisms indicated that the Int8 VNTR is responsible for the observed association. We then did functional analyses in reporter–gene constructs, demonstrating that allele 3 mediates significant (P < 0.05) but small reduced expression compared with the “protective” allele 2. This difference increased when 1 and 10 μM cocaine was added to the cell culture (~40% reduction of the 3 allele expression versus the 2 allele). The 3 allele also demonstrated ~3-fold-increased expression over the 2 allele in response to KCl plus forskolin challenge. We demonstrated a robust association between cocaine dependence and a VNTR allele in the DAT, conferring a small but detectable effect, and we show that this VNTR may be functional. This study suggests that variation within the DAT1 gene may play a role in the etiology of cocaine dependence.

Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: DA, dopamine; DAT, DA transporter; VNTR, variable-number tandem repeat; SNP, single-nucleotide polymorphism; LD, linkage disequilibrium; Int8, intron 8.

C.G. and M.H. contributed equally to this work.

To whom correspondence should be addressed: Section of Genetics, Medical Research Council Social Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, Kings College London, Room 222, Social, Genetic, and Developmental Psychiatry Centre, P.O. Box 81, London SE5 8AF, United Kingdom. E-mail: g.breen@iop.kcl.ac.uk.

© 2006 by The National Academy of Sciences of the USA

A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample

Camila Guindalini, Mark Howard, Kate Haddley, Ronaldo Laranjeira, David Collier, Nik Ammar, Ian Craig, Colin O’Gara, Vivian J. Bubb, Tiffany Greenwood, John Kelsoe, Phil Asherson, Robin M. Murray, Adauto Castelo, John P. Quinn, Homero Vallada, and Gerome Breen

Medical Research Council Social Genetic and Developmental Psychiatry Research Centre, Division of Psychological Medicine, and Addiction Centre, Institute of Psychiatry, King’s College London, London SE5 8AF, United Kingdom; Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil; Department of Physiology, Human Anatomy, and Cell Biology, School of Pharmacy, University of Liverpool, Liverpool L69 7ZX United Kingdom; Unit of Drug and Alcohol Research, Department of Psychiatry, Federal University of São Paulo, 04023–900 São Paulo, Brazil; Department of Psychiatry, University of California at San Diego, La Jolla, CA 92093; and Department of Psychiatry, San Diego Veterans Affairs Healthcare System, La Jolla, CA 92039

Edited by Susan G. Amara, University of Pittsburgh School of Medicine, Pittsburgh, PA, and approved January 17, 2006 (received for review June 8, 2005)

The dopamine (DA) transporter DAT1 is an important regulator of dopaminergic neurotransmission and the major target bound by cocaine in brain. We examined the influence of functional genetic variants in DAT1 on cocaine addiction. Repeat polymorphisms, including a 30-bp variable-number tandem repeat (VNTR) in intron 8 (Int8 VNTR) with two common alleles, were genotyped in cocaine-dependent abusers (n = 699) and in controls with no past history of drug abuse (n = 855) from São Paulo, Brazil. Positive association was observed with allele 3 of the Int8 VNTR and cocaine abuse (allele-wise odds ratio = 1.2, 95% confidence interval = 1.01–1.37, P = 0.036; genotype-wise for 3 homozygote odds ratio = 1.45, 95% confidence interval = 1.18–1.78, P = 0.0008). Population stratification was assessed and did not affect the results. Further haplotypic analyses using additional polymorphisms indicated that the Int8 VNTR is responsible for the observed association. We then did functional analyses in reporter–gene constructs, demonstrating that allele 3 mediates significant (P < 0.05) but small reduced expression compared with the “protective” allele 2. This difference increased when 1 and 10 μM cocaine was added to the cell culture (~40% reduction of the 3 allele expression versus the 2 allele). The 3 allele also demonstrated ~3-fold-increased expression over the 2 allele in response to KCl plus forskolin challenge. We demonstrated a robust association between cocaine dependence and a VNTR allele in the DAT, conferring a small but detectable effect, and we show that this VNTR may be functional. This study suggests that variation within the DAT1 gene may play a role in the etiology of cocaine dependence.

Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: DA, dopamine; DAT, DA transporter; VNTR, variable-number tandem repeat; SNP, single-nucleotide polymorphism; LD, linkage disequilibrium; Int8, intron 8.

C.G. and M.H. contributed equally to this work.

To whom correspondence should be addressed: Section of Genetics, Medical Research Council Social Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, Kings College London, Room 222, Social, Genetic, and Developmental Psychiatry Centre, P.O. Box 81, London SE5 8AF, United Kingdom. E-mail: g.breen@iop.kcl.ac.uk.

© 2006 by The National Academy of Sciences of the USA
the 5' and 3' regions, with little significant LD between them, probably because of a recombination hot spot located near the middle of the gene (introns 6–8). Based on these results, in addition to the 3' UTR VNTR, an insertion deletion polymorphism in intron 14, and a VNTR 10-kb 3' from the DAT gene, we selected a six-copy 30-bp VNTR located in intron 8 (Int8) for genotyping. This VNTR exists as just one (perfect) copy of the motif in the chimpanzee genome and is mildly conserved in rat and mouse, where this region of Int8 contains large, and presumably polymorphic, GA and CA repeats, respectively (http://genome.ucsc.edu).

These markers were then genotyped in a sample of ~700 cocaine abusers and ~860 controls from Sao Paulo, Brazil. We also investigated potential functional effects of identified risk alleles, with the aim of providing a plausible rationale for the associations observed. Here we report that the 30-bp VNTR located in Int8 of the DAT1 gene is associated with cocaine abuse in the Brazilian population and, further, that the risk allele has a differential effect on reporter gene expression that is sensitive to stimuli, including cocaine.

Results

Initial Genotyping. The allele counts and frequencies are indicated in Table 1 for the Int8 VNTR, Indel14, the 3' UTR VNTR, and 37-bp VNTR. The genotyping failure rates were 4% for the Indel14, 0.2% for the 3' UTR, and 1% for the 37-bp VNTR. No significant case-control difference was observed for the 3' UTR (genotype-wise: $\chi^2 = 14.4$; d.f. = 14; $P > 0.05$) or 37-bp ($\chi^2 = 6.4$; d.f. = 6; $P > 0.05$) VNTRs or Indel14 ($\chi^2 = 3.6$; d.f. = 2; $P > 0.05$) Association was found with cocaine abuse and the Int8 VNTR ($\chi^2 = 30.7$; d.f. = 12; $P = 0.002$).

Stratification analysis using different parameter options in the LPOP program (43) consistently indicated that a three-population (K = 3) model best fitted the data (AIC = 114907). Other models were also promising, such as a four-population model (K = 4; AIC = 114923). However, individuals in the three-population model were assigned to the classes with posterior probability greater than for the four-population model (data not shown). Moreover, posterior comparison demonstrated that this population substructure did not significantly differ among the cases and controls ($\chi^2 = 3.8$; d.f. = 2; $P = 0.15$).

For Int8, allele and genotype-wise analyses were also assessed excluding the rare alleles and considering only genotypes 2/2, 2/3, and 3/3 (because they were >95% of the total alleles and genotypes observed). The individual probability of belonging to each of the three population groups indicated by LPOP was used as a covariate in the regression analyses. The allele-wise odds ratio for the two most common alleles was 1.2, with a 95% confidence interval of 1.01–1.37 ($P = 0.036$), and the genotypic odds ratios considering a recessive model for the 3 allele, e.g., 3/3 genotype versus 2/2 and 2/3, was 1.45; with a 95% confidence interval of 1.18–1.78 ($P = 0.0008$).

Additional Genotyping. Genotype and allele frequencies for the rs2963238, rs11564773, rs27048, rs6347, rs6876225, rs11564773, and rs1042098 SNPs did not show a significant difference between cases and controls (data not shown). In addition, both controls and cases were in Hardy–Weinberg equilibrium ($P > 0.05$) for all SNPs and VNTRs tested. Additional clinical variables such as type of cocaine used, age of onset, or sex did not show an association/interaction with the markers genotyped (data not shown).

LD and Haplotype Analysis. The pairwise LD analyses revealed a pattern of disequilibrium along the DAT gene similar to that reported by Greenwood and Kelsoe (11) (Table 2). High levels of disequilibrium were observed between the two 3' VNTRs and SNP rs1042098, the Indel14 insertion/deletion, SNP rs11564773 in intron 14, together with SNP rs6876225 in intron 12 ($D' > 0.6$; $P < 0.0001$), and between the two SNPs located in the intron 1 ($D' = 0.7; P < 0.0001$). In addition, the Int8 VNTR and SNPs in Int8 and exon 9 revealed a third region of the gene with significant level of disequilibrium ($D' > 0.7; P < 0.0001$).

Haplotype analyses including all markers demonstrated a trend ($P < 0.1$) for association with cocaine abuse ($LRT = 24.23$; d.f. = 16; $P = 0.08$). However, when the Int8 VNTR was dropped from the analyses, no trend was observed ($LRT = 23.752$; d.f. = 18; $P = 0.163$).

Based on the LD results, we then analyzed haplotypes within each of these regions separately and tested their interaction with the Int8 VNTR by removing and then adding it to the analysis. Haplotype 1 consists of six markers in the 3' region of the gene (3' UTR through intron 12), haplotype 2 includes the three markers between Int8 and exon 9, and haplotype 3 comprises the two SNPs in the intron1. Haplotype 1 did not show significant association with cocaine abuse ($LRT = 12.75$; $P = 0.12$); however, when the Int8 VNTR was added to the haplotype analyses a positive association became evident ($LRT = 20.40$; $P = 0.008$). Moreover, analyses of

Table 1. Number and frequency of the most common alleles (frequency > 10%) of the three VNTRs and the Indel14 polymorphism in healthy controls and cocaine abusers in the Brazilian sample

<table>
<thead>
<tr>
<th>Alleles</th>
<th>No. of controls (%)</th>
<th>No. of cases (%)</th>
<th>P value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int8 VNTR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>567 (33.1)</td>
<td>408 (29.6)</td>
<td>0.036</td>
<td>1.2 (1.01–1.37)</td>
</tr>
<tr>
<td>3</td>
<td>1,145 (66.9)</td>
<td>971 (70.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,712</td>
<td>1,379</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indel14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,409 (85.1)</td>
<td>1,169 (87.5)</td>
<td>>0.05</td>
<td>0.81 (0.66–1.01)</td>
</tr>
<tr>
<td>2</td>
<td>247 (14.9)</td>
<td>167 (12.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,656</td>
<td>1,336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3' UTR VNTR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>464 (27.8)</td>
<td>378 (28.1)</td>
<td>>0.05</td>
<td>0.98 (0.83–1.15)</td>
</tr>
<tr>
<td>10</td>
<td>1,204 (72.2)</td>
<td>968 (71.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,668</td>
<td>1,346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-bp VNTR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,103 (65.9)</td>
<td>944 (68.7)</td>
<td>>0.05</td>
<td>0.87 (0.75–1.02)</td>
</tr>
<tr>
<td>3</td>
<td>572 (34.1)</td>
<td>430 (31.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,675</td>
<td>1,374</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
haplotype 2 (which includes the Int8 VNTR) demonstrated an association between these markers (LRT = 14.77; P = 0.02) and cocaine abuse, but when the Int8 VNTR was dropped from the haplotype no association was observed with haplotype 2 (LRT = 2.35; P = 0.49). Haplotype 3 did not demonstrate a significant association with cocaine abuse (LRT = 0.31; P = 0.85), but when the Int8 VNTR was added a positive association was detected (LRT = 10.55; P = 0.03).

Sequence Analysis. We have sequenced the seven alleles found for the Int8 VNTR. Upon analysis it appeared that all of the alleles are comprised of variable numbers of an a repeat motif and one b repeat motif, which has a 2-bp difference from the a repeat. (Fig. 1). Moreover, to investigate whether there were any sequence differences between the Int8 VNTR alleles in terms of the sequence of the repeat unit, two pools containing PCR products of 25 individuals homozygous for the 2 and 3 alleles were sequenced in addition to three individual homozygotes for each allele. The reads were generated on an Applied Biosystems 3730 DNA Analyzer platform and analyzed by SEQUENCER software, version 4.0.5.

Functional Results. Because the location of the Int8 VNTR was within the gene, away from the 5’ or 3’ regions, we used a modified *Renilla* vector with a unique intronic Asc1 site to allow us to examine potentially interesting intronic regulatory domains. The Int8 VNTR, when cloned in this domain and transfected into the dopaminergic SN4741 cell line, which expresses DAT (21), demonstrated a reproducible and statistically significant increase at baseline (Student’s t test = 2.64; d.f. = 27; P = 0.013) in reporter gene expression supported by the 2 allele of the Int8 VNTR versus that supported by the 3 allele. In both cases expression levels were <50% of the unmodified *Renilla* vector. Additionally, to examine potential effects on hnRNA/mRNA stability, the Int8 VNTR alleles were also inserted 5’ in pGL3 luciferase vector and transfected in JAR cells. This demonstrated repression of transcription, with the vectors showing <50% of unmodified vector expression (data not shown).

We then tested the response of the Int8–VNTR 2 and Int8–VNTR 3 alleles to distinct challenges in the form of (i) cocaine, (ii) KCl, and (iii) cocaine and forskolin by adding these chemical stimuli to the cell culture medium as outlined. Here we summarize the conditions and results obtained for each stimulus.

Two concentrations of cocaine hydrochloride (Sigma), 1 and 10 μM, were added to the cell culture medium. In both cases, the Int8 VNTR 3 allele vector demonstrated an ~40% reduction in expression (t = 4.0 and t = 6.04; d.f. = 16; P = 0.001 and P < 0.001) versus the 2 allele, with a slightly increased effect for the 10 μM concentration. Cocaine has been observed to modulate many neuronal genes, in part through activation of specific transcription factors pathways including those regulated by members of the API family such as c-fos and c-jun (22, 23).

In cultured cells, it has been shown that increasing extracellular K+ results leads to an increase in cytosolic Ca2+ and results in enhanced (Ca2+-dependent) transcription (24, 25). We induced Ca2+ signaling by depolarizing the membrane potential of the cell by adding KCl (40 mM) to the medium. This resulted in increased expression from the allele 3 vector versus the 2 allele (t = 3.0; d.f. = 16; P = 0.008).

Forskolin (10 μM), a membrane-permeable activator of adenylate cyclase, and K+ (40 mM) were coadministered to the cell culture medium. In this system, the Int8–VNTR 3 allele demonstrated a large increase (6-fold) in reporter gene expression in response to synergistic challenge over the 2 allele (t = −8.95; P < 0.001; d.f. = 8.882 as equal variances not assumed in this case). We have previously shown that these stimuli act synergistically on gene expression supported by reporter gene constructs both in clonal cell lines and in organotypic CNS cultures (24, 26, 27).

These data are graphed in Fig. 2, and relative expression level values are shown in Table 3, which shows the relative effect of cocaine and the other stimuli on the expression of the vectors, with the vector containing the 3 allele showing an increased response to stimuli compared with the 2 allele at every treatment. In addition, for every treatment the 3 allele shows a significant change (P < 0.05) from baseline conditions, whereas for the 2 allele the only significant differences observed were for the KCl and 10 μM

| Marker’s names and locations: 1, rs11564752 (intron 1); 2, rs2963238 (intron 1); 3, rs27048 (Int8); 4, Int8 VNTR (Int8); 5, rs6347 (exon 9); 6, rs6876225 (intron 12); 7, Indel 14 (intron 14); 8, rs11564773 (intron 14); 9, rs1042098 (3’ UTR); 10, 3’ UTR VNTR (3’ UTR); 11, 37-bp VNTR (3’ UTR). |

Table 2. Pairwise LD values: absolute value of D’

<table>
<thead>
<tr>
<th>Absolute value of D’</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.637</td>
<td>0.206</td>
<td>0.317</td>
<td>0.173</td>
<td>0.102</td>
<td>0.029</td>
<td>0.126</td>
<td>0.44</td>
<td>0.392</td>
<td>0.586</td>
</tr>
<tr>
<td>2</td>
<td>0.187</td>
<td>0.136</td>
<td>0.17</td>
<td>0.026</td>
<td>0.065</td>
<td>0.246</td>
<td>0.063</td>
<td>0.015</td>
<td>0.005</td>
<td>0.102</td>
</tr>
<tr>
<td>3</td>
<td>0.82</td>
<td>0.72</td>
<td>0.17</td>
<td>0.286</td>
<td>0.17</td>
<td>0.201</td>
<td>0.117</td>
<td>0.103</td>
<td>0.044</td>
<td>0.004</td>
</tr>
<tr>
<td>4</td>
<td>0.745</td>
<td>0.077</td>
<td>0.475</td>
<td>0.272</td>
<td>0.534</td>
<td>0.441</td>
<td>0.368</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.059</td>
<td>0.32</td>
<td>0.293</td>
<td>0.537</td>
<td>0.412</td>
<td>0.311</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.887</td>
<td>0.97</td>
<td>0.05</td>
<td>0.438</td>
<td>0.742</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.799</td>
<td>0.197</td>
<td>0.215</td>
<td>0.238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.189</td>
<td>0.35</td>
<td>0.692</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.885</td>
<td>0.667</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.726</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. The sequences shown represent the flanking sequences of the Int8 VNTR and the 3 allele, which is six copies of the repeat (Upper) and the 2 allele, which is five copies of the repeat (Lower). All of the alleles found for this polymorphism are comprised of variable numbers of an a repeat motif and one b repeat motif, which has 2-bp differences from the a repeat.
coca ine treatments (data not shown). These were significantly smaller than the effects observed for the 3 allele in both cases (see above).

Discussion

We examined a total of 699 cocaine abusers and 866 controls and identified a positive association with alleles and genotypes of the 30-bp VNTR in Int8 of the DAT1 gene, the Int8 VNTR. Association and haplotype analyses using other polymorphisms in and near the gene (two VNTRs, one Indel, and seven SNPs) indicate that the Int8 VNTR is the variant responsible for the observed association despite significant LD existing between it and some of the other variants. Moreover, stratification analyses indicated a similar distribution of population substructure in the cases and controls, and the association remained positive after covarying for this in the regression analyses. This suggests that population stratification is not responsible for the observed association.

Is the VNTR polymorphism in Int8 functional? Our experiments show that the risk allele 3 exhibits differential and increased responses to stimuli in comparison to the protective allele 2. Specifically, we demonstrated a differential effect on reporter gene expression supported by the Int8–VNTR 3 allele when placed in the intron of an expression vector and transfected into a mouse dopaminergic (substantia nigra-derived) cell line, SN4741, expressing the DAT1 (21). When challenged with the addition of KCl and forskolin to the cell culture medium, the 3 allele demonstrated an increased regulation of reporter gene expression (six times normal regulation), whereas the 2 allele did not exhibit any change or changed only slightly in comparison. We previously used the synergistic activation of K+-induced depolarization and forskolin to modulate the effects on expression of a variety of distinct transcriptional regulatory domains (24–26–28). But, perhaps of more relevance, the effects observed were opposite when the cells were exposed to cocaine, with decreased expression of the 3 allele and little or no response of allele 2. From Fig. 3 a consistent effect can be observed with the 3 allele mediating large differential responses to stimuli, whereas the expression of the 2 allele remaining (comparatively) constant across the treatments.

These expression data indicate that the Int8 VNTR sequence domain supports differential gene expression dependent on both the allele analyzed and the stimulus applied to the cell. These are the characteristics of a stimulus-sensitive regulatory domain whose function is determined by the binding of sequence-specific nucleic acid binding proteins. Because the alleles support differential expression we must assume that the difference in primary sequence as defined by the copy number is allowing differential binding of transcription factors, although we have not yet identified these. Even though it appears that the common Int8 VNTR alleles differ by only one perfect repeat unit, it has been demonstrated that the on/off rate for transcription factors in recognizing their cognate binding sites in tandem repeats can be affected by the copy number of those repeats (29, 30).

Given the differential response characteristics of the reporter gene containing the Int8 VNTR in reporter constructs and the neurochemical and neurotoxic effects of cocaine, we theorize that people possessing the 3/3 genotype will exhibit a differential response via altered DAT1 gene expression when exposed to cocaine. However, we have only shown this differential regulation to cocaine on the individual intronic VNTR domains, out-with their genomic context. Precise molecular characterization of the role that specific VNTR domains, such as Int8, play in endogenous regulation of DAT1 is not within the scope of this study. This would potentially require complex reporter gene constructs that span the whole gene to encompass the many regulatory domains both 5' and 3' (31, 32). Nevertheless, what we were able to ascertain about the regulatory properties of the Int8–VNTR domain clearly suggests a mechanism by which this polymorphism can be associated with cocaine abuse by altering the tissue-specific or stimulus-inducible expression of the DAT1 gene. A previous study investigating the effect of cocaine abuse in the postmortem human brain demonstrated that, in cocaine users, DAT1 levels and DA uptake were elevated in the ventral striatum when compared with control subjects, providing further evidence of adaptation in DA uptake after chronic cocaine exposure (33).

It is notable that, to our knowledge, this is the first medium-to-large-scale study of the role of DAT1 gene variants in cocaine abuse both in terms of the sample size examined and the number of polymorphisms genotyped. There have been relatively few genetic association studies of cocaine abuse, only one of which (14) looked at the role of a DAT1 polymorphism in a sample of 102 cocaine abusers through genotyping the 3' UTR VNTR. In that study, Gelernter et al. (14) failed to find an association with cocaine abuse but did suggest a role for DAT1 3' UTR VNTR alleles in cocaine-induced paranoia, which was not measured in our sample. Other molecular genetic studies that have examined cocaine abuse as the primary phenotype have focused principally on the serotonin transporter (34–36), DA β-hydroxylase (37), and DA receptors (38).
To conclude, we found a robust association between cocaine abuse and a functional VNTR allele in the DAT1, conferring a small but detectible effect. Whereas a false positive finding due to population stratification is a potential concern for this type of study, this was addressed by stratification analysis. This indicated that there was population substructure, which was similarly distributed in the cases and controls. Covarying for this substructure in the association test did not change the results. The demonstration of differential functional effects for the risk allele, including an increased inhibitory effect on reporter gene expression when exposed to cocaine, indicates a possible functional role for this polymorphism in the response to cocaine. In addition, the haplotype and other genetic analyses in the sample support the idea that the Int8–VNTR is the relevant functional polymorphic motif in this sample. However, both the functional and genetic case-control work will require replication. If true, additional studies of drug abuse phenotypes other than cocaine abuse will also be necessary to explore the role of this polymorphism in addictive processes in general.

Methods

Association Study. Patients. Six hundred ninety-nine cocaine abusers (668 males, 31 females, mean age 26.7 years, SD = 7.2) were ascertained (39, 40). The study group consisted of drug users who were in treatment from August 1997 to October 1998 in one outpatient and six inpatient units located in the city of São Paulo, Brazil. Inclusion criteria were as follows: age 18 years and older, a history of cocaine abuse, and drug treatment at the selected centers. Individuals with another psychiatric diagnosis, such as psychosis, or a chronic physical illness such as diabetes or other metabolic disorders were excluded. All current cocaine users were then interviewed by using a structured interview to collect data on sociodemographic characteristics, sexual behaviors, and drug use profile. All subjects satisfied an ICD10 diagnosis of cocaine dependence (41). Blood samples were collected from all participants for genetic and other analyses. A total of 63.8% of the participants interviewed by using a structured interview to collect data on a chronic physical illness such as diabetes or other metabolic disorders were excluded. During the act of donation a short interview was conducted, and subjects with a lifetime history of a psychiatric disorder requiring admission to a hospital or suffering from a psychiatric condition at time of interview were excluded.

Ethics. All of the subjects included in this study gave written informed consent, and this project was approved by the Ethical Committee of the Federal University of São Paulo and other relevant ethics committees.

Fig. 3. Schematic diagram of the DAT1 gene (SLC6A3) indicating the position of the markers analyzed in this study.

**Selection of Genetic Markers. VNTRs. In silico analyses of publicly available human DAT1 sequence (http://genome.ucsc.edu, July 2003 release, NCBI v.31) revealed a large number of genomic VNTRs in introns. The 40-bp 3’ UTR VNTR (designated here as 3’ UTR) and a VNTR in Int8 of the gene were selected for the investigation. To help estimate haplotype patterns of this region, we also selected a novel VNTR (37-bp VNTR) located on the 3’ UTR VNTR and a putatively functional 15-bp insertion/deletion polymorphism located in intron 14 of the gene (Indel.14) (11). The 37-bp VNTR is described as a 6.1 copies of a 37-bp repetitive element polymorphism, and the Int8 is described also as 6.1 copies, but of a 30-bp element in the Simple Repeat table of the Human Genome in the University of California (Santa Cruz) Golden Path database (http://genome.ucsc.edu) (42). Alleles of the Int8 and 37-bp VNTRs were called according to their relative size (smallest = allele 1), and the coding system using the range from 3 to 11 copies was applied for the 40-bp 3’ UTR VNTR (6).

SNPs. In a previous study analyzing variation within DAT1, Greenwood et al. (10) selected a number of SNPs that span the gene from the distal promoter through the 3’ UTR that are suitable for LD analyses. We genotyped seven of these SNPs: rs2963238 (C/A) and rs11564773 (G/T) in intron 1, rs27048 (A/G) in Int8, rs6347 (A/G) in exon 9, rs8670225 (A/C) in intron 12, rs11564773 (A/G) in intron 14, and rs1042098 in the 3’ UTR of the gene. See Fig. 3 for a diagram with the location of all markers.

Markers for Stratification Analysis. We selected 17 SNPs and seven highly polymorphic microsatellites markers that exhibit large allele frequency differences among the three main Brazilian ancestral populations (Europeans, Africans, and Native Americans; M. Shriver, personal communication). Genotyping of all SNPs selected for this study was performed blind to status by using an amplifluor assay and was performed under contract by K-Biosciences (Cambridge, U.K.). Primers and conditions for the microsatellites used can be obtained upon request.

Statistical Analyses. Population substructure in the study sample was studied by using the program LPFO (43) to define clusters of ancestry of similar individuals by using multilocus genotypes. To identify the best model for the Brazilian population, we performed runs combining various available parameters in the program and different numbers of genetic clusters (K = 1 to K = 10) represented by the individuals genotyped.

**Genotype and allele frequencies were compared by using a χ² test, and P values were assessed by using spss version 10.0 and checked by means of simulation (CLUMP, version 2.2) (44). The role of other clinical variables was tested with ANOVA or a nonparametric test as appropriate. GENECOUNTING version 2.0 (refs. 44 and 45; www.mds.qmw.ac.uk/statgen/ducritis/software.html) and WHAP (http://pngu.mgh.harvard.edu/~purcell/whap) were used to estimate haplotype frequencies. Odds ratios and 95% confidence intervals were derived from logistic regression. In addition, pairwise LD was calculated by using the LD pairs program from GC utilities (45). Hardy–Weinberg equilibrium was tested by calculating a χ² statistic with one degree of freedom for the SNPs and by using...
CLUMP, which uses simulations of the data to generate a distribution of \(\chi^2 \) statistics to assess the significance of the test-derived \(\chi^2 \) for the multiallelic markers tested.

Expression Analyses. Cell growth. SN4741 is a mouse substantia nigra-derived dopaminergic neuronal cell line and was cultured at 33°C, 5% CO\(_2\), in DMEM with Glutamax supplemented with 10% FCS, 1% glucose, and penicillin–streptomycin. After transfection, cells were incubated in the same conditions (46). JAR cells were used for the pG3p luciferase vector (Promega) transfections and were similarly cultured.

Construction of reporter gene constructs. We inserted the two common Int8 allelic variants into the intron of the \textit{Renilla} vector pHRLv40 (Promega) using a plasmid containing a single AscI linker within its intronic region to allow for cloning of test-postulated intronic \textit{Int8} allelic variants into the intron of the \textit{H9262 (3)} reporter gene construct. Transfection. Cells \((1 \times 10^6)\) were plated onto 24-well plates 24 h before transfection with TransFast (Promega). Transfections were performed in triplicate using cells of the same or similar passage instructions. Results are means per well). Cells were then washed twice with PBS, and DNA medium mixture was added for 1 h, after which 1 ml of relevant cell medium was added for 1 h per well). Supernatants were assayed for reporter gene expression by using the relevant Promega assay system. Supernatant \((20 \mu l) \) was added to 100 \(\mu l \) of cell lysate was centrifuged briefly at 10,000 \(\times \) g. Supernatants were assayed for reporter gene expression by using the relevant Promega assay system. Supernatant \((20 \mu l) \) was added to 100 \(\mu l \) of cell lysate was centrifuged briefly at 10,000 \(\times \) g. Supernatants were assayed for reporter gene expression by using the relevant Promega assay system. Supernatant \((20 \mu l) \) was added to 100 \(\mu l \) of cell lysate was centrifuged briefly at 10,000 \(\times \) g. Supernatants were assayed for reporter gene expression by using the relevant Promega assay system. Supernatant \((20 \mu l) \) was added to 100 \(\mu l \) of cell lysate was centrifuged briefly at 10,000 \(\times \) g. Supernatants were assayed for reporter gene expression by using the relevant Promega assay system. Supernatant \((20 \mu l) \) was added to 100 \(\mu l \) of cell lysate was centrifuged briefly at 10,000 \(\times \) g. Supernatants were assayed for reporter gene expression by using the relevant Promega assay system. Supernatant \((20 \mu l) \) was added to 100 \(\mu l \) of cell lysate was centrifuged briefly at 10,000 \(\times \) g. Supernatants were assayed for reporter gene expression by using the relevant Promega assay system. Supernatant \((20 \mu l) \) was added to 100 \(\mu l \) of cell lysate was centrifuged briefly at 10,000 \(\times \) g. Supernatants were assayed for reporter gene expression by using the relevant Promega assay system. Supernatant \((20 \mu l) \) was added to 100 \(\mu l \) of cell lysate was centrifuged briefly at 10,000 \(\times \) g. Supernatants were assayed for reporter gene expression by using the relevant Promega assay system.
A—Au: Please contact David Haber (e-mail: haberd@cadmus.com; phone: 410-694-4154) if you have questions about the editorial changes, this list of queries, or the figures in your article. Please (i) review the author affiliation and footnote symbols carefully, (ii) check the order of the author names, and (iii) check the spelling of all author names and affiliations. Please indicate that the author and affiliation lines are correct by writing “OK” in margin next to the author line.

B—Au: Please review the information in the author contribution footnote below carefully. The author contribution footnote will appear online only, and the footnote text appears in the article page proofs only here on the query page(s). Please make sure that the information is correct and that the correct author initials are listed. If you have corrections to this footnote, please print this query page, mark the corrections on it, and return the query page along with the page proofs: Author contributions: R.L., D.C., I.C., T.G., J.K., P.A., A.C., J.P.Q., H.V., and G.B. designed research; C.G., M.H., K.H., R.L., N.A., C.O., A.C., H.V., and G.B. performed research; I.C., V.J.B., P.A., and J.P.Q. contributed new reagents/analytic tools; C.G., M.H., K.H., N.A., C.O., J.P.Q., and G.B. analyzed data; and C.G., M.H., D.C., I.C., R.M.M., J.P.Q., H.V., and G.B. wrote the paper.

C—Au: Please confirm change from augments to increased.

D—Au: Abstracts are limited to 250 words. Please delete 19 words.

E—Au: PNAS allows up to five key terms that do not repeat the title and do not include nonstandard abbreviations. You may add two terms.

F—Au: Please replace bullets with an appropriate noun.

G—Au: PNAS italicizes the names of genes and alleles. Please check throughout the manuscript and correct as necessary. If at any point you mean “the gene that encodes protein XXX,” then no italics are necessary.

H—Au: Please write out d.f. at first use.

I—Au: Please write out K at first use.

J—Au: Please write out AIC at both uses.
AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

K—Au: Please write out LRT at first use.

L—Au: What is meant by hnRNA?

M—Au: Is JAR a cell line? If not, please write out this abbreviation (used twice).

N—Au: Please replace bullets throughout with appropriate nouns.

O—Au: Should “out-with” be “without”?

P—Au: PNAS prohibits mentions of submitted work, so “our unpublished data” was inserted. If not all authors of this article were the observers of the data cited here, please supply all names for the unpublished data.

Q—Au: Please confirm that you received permission to cite this personal communication.

R—Au: Please confirm updated url for WHAP.

S—Au: Please clarify “LD pairs program from GC utilities.” Is “LD pairs” the name of the software? Is GC Utilities a supplier?

T—Au: Please submit a new high-resolution file for Fig. 2 with the following change made: move x axis labels and tick marks to the bottom of the figure for clarity.
2006 Reprint and Publication Charges

Reprint orders and prepayments must be received no later than 2 weeks after return of your page proofs.

PUBLICAION FEES:

Page Charges

(Research Articles Only)

Page charges of $70 per journal page are requested for each page in the article.

Articles Published with Figures

(Research Articles Only)

If your article contains color, add $250 for each color figure or table. Replacing, deleting, or resizing color will cost $150 per figure or table. Replacing black-and-white figures will cost $25 per figure. State the exact figure charge on the previous page and add to your payment or purchase order accordingly.

Supporting Information

(Research Articles Only)

Supporting information for the web will cost $200 per article.

PNAS Open Access Option

Authors may pay a surcharge of $1000 to make their paper freely available online immediately upon publication. If your institution has a 2006 Site License, the open access surcharge is $750. If you wish to choose this option, please notify the Editorial Office (pnas@nas.edu) immediately, if you have not already done so.

Shipping

UPS ground shipping within the continental United States (1–5 days delivery) is included in the reprint prices, except for orders over 1,000 copies. Orders are shipped to authors outside the continental United States via expedited delivery service (included in the reprint prices).

Multiple Shipments

You may request that your order be shipped to more than one location. Please add $45 for each additional address.

Delivery

Your order will be shipped within 2 weeks of the journal publication date.

Tax Due

For orders shipped to the following locations, please add the specified sales tax:

- Canada – 7%
- California – 7.25%
- Maryland – 5%
- Washington, DC – 5.75%
- Florida – 6%

Sales tax and local surtax, if you are in a taxing county.

Ordering

Prepayment or a signed institutional purchase order is required to process your order. You may use the previous page as a Proforma Invoice. Please return your order form, purchase order, and payment to:

PNAS Reprints

PO Box 631694
Baltimore, MD 21263-1694
FEIN 53-0196932

Please contact Tracy Harding by e-mail at hardingt2@cadmus.com, phone 1-800-407-9190 (toll free) or 1-410-819-3961, or fax 1-410-820-9765 if you have any questions.

New for 2006!

Covers are now only an additional $60 regardless of the reprint quantity ordered. Please see reprint rates and cover image samples below.

Rates for Black/White Reprints

(Minimum Order 50. Includes Shipping.)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>Add’l 50s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>$400</td>
<td>$540</td>
<td>$580</td>
<td>$630</td>
<td>$680</td>
<td>$725</td>
<td>$45</td>
</tr>
<tr>
<td>Foreign</td>
<td>$435</td>
<td>$580</td>
<td>$640</td>
<td>$725</td>
<td>$795</td>
<td>$860</td>
<td>$65</td>
</tr>
</tbody>
</table>

* Color covers may be ordered for black-and-white reprints; however, color reprint rates (below) will apply.

Rates for Color Reprints

(Minimum Order 50. Includes Shipping.)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>Add’l 50s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>$440</td>
<td>$560</td>
<td>$770</td>
<td>$1,035</td>
<td>$1,330</td>
<td>$1,625</td>
<td>$280</td>
</tr>
<tr>
<td>Foreign</td>
<td>$500</td>
<td>$600</td>
<td>$825</td>
<td>$1,140</td>
<td>$1,470</td>
<td>$1,880</td>
<td>$310</td>
</tr>
</tbody>
</table>

1 Please return your order form promptly.

Covers for black-and-white reprints will display the volume, issue, page numbers, and black-and-white PNAS masthead with the reprint article title and authors imprinted in the center of the page.

Covers for color reprints will display the volume, issue, page numbers, and the color PNAS masthead and will include the issue cover image with the reprint article title and authors imprinted in the center of the page.

Covers for black-and-white and color reprints will be printed on the same paper stock as the article.
2006 Reprint Order Form or Proforma Invoice
(Please keep a copy of this document for your records.)

Reprint orders and payments must be received no later than 2 weeks after return of your proofs.

1 Publication Details
Reprint Order Number 1214570
Author's Name
Title of Article
Number of Pages Manuscript Number 05-04789
Are there color figures in the article? Yes No

2 Reprint Charges (Use Rates Listed on Next Page)
Indicate the number of reprints ordered and the total due. Minimum order is 50 copies; prices include shipping.

Research, Special Feature Research, From the Academy, and Colloquium Articles:
Reprints (black/white only) $
Color Reprints (with color figures) $
Covers $

For Commentary, Inaugural, Solicited Review, and Solicited Perspective Articles Only:
First 100 Reprints (free; black/white or color) $
Additional 50s (apply "Add1 50s" rates listed on next page for orders larger than 100 reprints) $
Covers $

Total $

*For orders shipped to the following locations, please add the specified sales tax: Canada – 7%; California – 7.25%; Maryland – 5%; Washington, DC – 5.75%; Florida – 6% sales tax and local surtax, if you are in a taxing county.

3 Publication Fees (Research Articles Only)
Pages in article @ $70 per page requested $
Color figures or tables in article @ $250 each $
Replacement or deletion of color figures @ $150 each $
Replacement of black/white figures @ $25 each $
Supporting information @ $200 per article $
Open Access option @ $1000 ($750 if your institution has a 2006 Site License/Open Access Membership) per article $
Subtotal $
Sales Tax* $
Total $

4 Invoice Address
It is PNAS policy to issue one invoice per order.
Name
Institution
Department
Street
City State Zip
Country
Phone Fax
Purchase Order Number

5 Shipping Address
Name
Institution
Address
Street
City State Zip
Country
Quantity of Reprints
Phone Fax

6 Additional Shipping Address 1
Name
Institution
Address
Street
City State Zip
Country
Quantity of Reprints
Phone Fax

1 Add $4 for each additional shipping address.

7 Method of Payment
Enclosed: Credit Card Personal Check Institutional Purchase Order

8 Credit Card Payment Details
Visa MasterCard AMEX
Card Number Exp. Date Signature

9 Payment Authorization
☐ I assume responsibility for payment of these charges. (Signature is required. By signing this form, the author agrees to accept responsibility for payment of all charges described in this document.)

Signature of Responsible Author

Phone Fax

Send payment and order form to PNAS Reprints, PO Box 631694, Baltimore, MD 21263-1694 FEIN 53-0196932
Please e-mail hardingt2@cadmus.com, call 1-800-407-9190 (toll free) or 1-410-819-3961, or fax 1-410-820-9765 if you have any questions.
Proofreader's Marks

<table>
<thead>
<tr>
<th>MARK</th>
<th>EXPLANATION</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TAKE OUT CHARACTER INDICATED</td>
<td>0 Your proof.</td>
</tr>
<tr>
<td>^</td>
<td>LEFT OUT, INSERT</td>
<td>^ Your proof.</td>
</tr>
<tr>
<td>#</td>
<td>INSERT SPACE</td>
<td># Your proof.</td>
</tr>
<tr>
<td>9</td>
<td>TURN INVERTED LETTER</td>
<td>9 Your proof.</td>
</tr>
<tr>
<td>×</td>
<td>BROKEN LETTER</td>
<td>× Your proof.</td>
</tr>
<tr>
<td>24</td>
<td>EVEN SPACE</td>
<td># A good proof.</td>
</tr>
<tr>
<td>⊗</td>
<td>CLOSE UP: NO SPACE</td>
<td>⊗ Your proof.</td>
</tr>
<tr>
<td>tr</td>
<td>TRANSPOSE</td>
<td>tr A proof good</td>
</tr>
<tr>
<td>wf</td>
<td>WRONG FONT</td>
<td>wf Your proof.</td>
</tr>
<tr>
<td>lc</td>
<td>LOWER CASE</td>
<td>lc Your proof.</td>
</tr>
<tr>
<td>caps</td>
<td>CAPITALS</td>
<td>Your proof.</td>
</tr>
<tr>
<td>_</td>
<td>ITALIC</td>
<td>_ Your proof.</td>
</tr>
<tr>
<td>rom</td>
<td>ROMAN, NON ITALIC</td>
<td>rom Your proof.</td>
</tr>
<tr>
<td>bf</td>
<td>BOLD FACE</td>
<td>bf Your proof.</td>
</tr>
<tr>
<td>......</td>
<td>LET IT STAND</td>
<td>...... Your proof.</td>
</tr>
<tr>
<td>stet</td>
<td>LET IT STAND</td>
<td>stet Your proof.</td>
</tr>
<tr>
<td>out sc</td>
<td>DELETE, SEE COPY</td>
<td>out sc She Your proof.</td>
</tr>
<tr>
<td>spell out</td>
<td>SPELL OUT</td>
<td>spell out Queen Elizabeth</td>
</tr>
<tr>
<td>§</td>
<td>START PARAGRAPH</td>
<td>§ read. Your</td>
</tr>
<tr>
<td>no §</td>
<td>NO PARAGRAPH: RUN IN</td>
<td>no § marked Your proof.</td>
</tr>
<tr>
<td>—</td>
<td>LOWER</td>
<td>— Your proof.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MARK</th>
<th>EXPLANATION</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>RAISE</td>
<td>— Your proof.</td>
</tr>
<tr>
<td>□</td>
<td>MOVE LEFT</td>
<td>□ Your proof.</td>
</tr>
<tr>
<td>□</td>
<td>MOVE RIGHT</td>
<td>□ Your proof.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— —</td>
<td>STRAIGHTEN LINE</td>
<td>— — Your proof.</td>
</tr>
<tr>
<td>.</td>
<td>INSERT PERIOD</td>
<td>. Your proof.</td>
</tr>
<tr>
<td>/</td>
<td>INSERT COMMA</td>
<td>/ Your proof.</td>
</tr>
<tr>
<td>:</td>
<td>INSERT COLON</td>
<td>: Your proof.</td>
</tr>
<tr>
<td>;</td>
<td>INSERT SEMICOLON</td>
<td>; Your proof.</td>
</tr>
<tr>
<td>‡</td>
<td>INSERT APPOSTROPH</td>
<td>‡ Your mans proof.</td>
</tr>
<tr>
<td>^</td>
<td>INSERT QUOTATION MARKS</td>
<td>^ ^ Marked it proof</td>
</tr>
<tr>
<td>=/</td>
<td>INSERT HYPHEN</td>
<td>=/ A proof mark.</td>
</tr>
<tr>
<td>/</td>
<td>INSERT EXCLAMATION MARK</td>
<td>/ Prove it</td>
</tr>
<tr>
<td>?</td>
<td>INSERT QUESTION MARK</td>
<td>? Is it right</td>
</tr>
<tr>
<td>?</td>
<td>QUERY FOR AUTHOR</td>
<td>? Your proof read by</td>
</tr>
<tr>
<td>c/j</td>
<td>INSERT BRACKETS</td>
<td>c/j The Smith girl</td>
</tr>
<tr>
<td>c/j</td>
<td>INSERT PARENTHESIS</td>
<td>c/j Your proof</td>
</tr>
<tr>
<td>/m</td>
<td>INSERT 1-EM DASH</td>
<td>/m Your proof.</td>
</tr>
<tr>
<td>□</td>
<td>INDENT 1 EM</td>
<td>□ Your proof.</td>
</tr>
<tr>
<td>□□</td>
<td>INDENT 2 EMS</td>
<td>□□ Your proof.</td>
</tr>
<tr>
<td>□□□</td>
<td>INDENT 3 EMS</td>
<td>□□□ Your proof.</td>
</tr>
</tbody>
</table>