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Association of relative brain age 
with tobacco smoking, alcohol 
consumption, and genetic variants
Kaida ning1,2, Lu Zhao1, Will Matloff1,3, fengzhu Sun2 & Arthur W. toga1*

Brain age is a metric that quantifies the degree of aging of a brain based on whole-brain anatomical 
characteristics. While associations between individual human brain regions and environmental or 
genetic factors have been investigated, how brain age is associated with those factors remains unclear. 
We investigated these associations using UK Biobank data. We first trained a statistical model for 
obtaining relative brain age (RBA), a metric describing a subject’s brain age relative to peers, based on 
whole-brain anatomical measurements, from training set subjects (n = 5,193). We then applied this 
model to evaluation set subjects (n = 12,115) and tested the association of RBA with tobacco smoking, 
alcohol consumption, and genetic variants. We found that daily or almost daily consumption of tobacco 
and alcohol were both significantly associated with increased RBA (P < 0.001). We also found SNPs 
significantly associated with RBA (p-value < 5E-8). The SNP most significantly associated with RBA is 
located in MApt gene. our results suggest that both environmental and genetic factors are associated 
with structural brain aging.

The number of American aged 65 and over is projected to reach 80 million by year 20501. The brain aging process, 
while associated with structural changes, declined cognitive function, and increased risk of dementia, differs 
between individuals2–4. Therefore, to understand the factors associated with brain aging becomes increasingly 
important.

It is known that certain lifestyle habits are associated with accelerated atrophy in specific brain regions. 
Heavy smoking and heavy alcohol drinking are among the most studied adverse factors. Compared with 
non-smokers, smokers have significantly smaller grey matter volume and lower grey matter density in the frontal 
regions, the occipital lobe, and the temporal lobe. Further, smokers have a significantly greater rate of atrophy 
in regions that show morphological abnormalities in the early stages of Alzheimer’s disease5–7. It has also been 
reported that patients with alcohol use disorder show decreased regional grey and white matter volumes in the 
medial-prefrontal and orbitofrontal cortices. The loss of brain gray and white matter volume accelerates with 
aging in chronic alcoholics8,9. On the other hand, studies have shown that nicotine, a compound contained in 
tobacco, may improve attention and other cognitive functions in human subjects10,11. It has also been reported 
that drinking wine may be beneficial to the cardiovascular system, which is related to brain health12,13. To date, it 
is still unclear how smoking and alcohol consumption is associated with brain structural aging, especially when 
the morphology of all the brain regions is considered.

Besides lifestyle habits, genetic factors are also thought to be involved in brain aging. A recent study analyzed 
brain imaging data and chronological age (CA) information from twins and suggested that the brain aging pro-
cess was heritable14. However, the extent to which individual genetic variants are associated with brain aging 
hasn’t been well studied, except for some conflicting results regarding the association between genetic variation in 
APOE, a gene associated with Alzheimer’s disease, and brain aging15–17. Therefore, we also investigated if genetic 
factors are associated with brain aging in addition to smoking and alcohol consumption. Further, genetic and 
environmental factors might interact in affecting traits, risk of complex diseases, or lifespan18–20. For example, 
hypertension interacts with APOE ɛ4 risk allele in affecting cognitive function21; the diabetes drug metformin 
extends lifespan of the rat model with hypertension, yet doesn’t extend lifespan of healthy rats22. Therefore, it is 
important to explore if there is genetic and environmental factor interaction in association with brain aging.
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Recently, researchers have successfully used machine-learning methods to derive a biomarker that is com-
monly referred to as predicted brain age (PBA) or brain age based on brain imaging data. PBA reflects the degree 
of aging of the brain based on its anatomical characteristics, as computed based on brain morphology measure-
ments across the entire brain. PBA has been derived and used in several studies, where the mean absolute error 
between PBA and CA was less than 5 years in adults14,23,24. Further, it has been shown that advanced brain age 
is associated with Alzheimer’s disease, objective cognitive impairment, and schizophrenia, etc.23–27. Before our 
research, many papers used the difference between PBA and CA (i.e., PBA - CA) for capturing deviation of per-
son’s brain structural aging from norm15,17. However, due to regression dilution, this metric is correlated with CA 
and may not be optimal28,29. Therefore, we further developed a metric called relative brain age (RBA), which is 
independent of CA and indicates if a subject’s brain has experienced accelerated or decelerated aging compared 
to peers. While our manuscript was under review, Smith et al. independently reported a method for improving 
brain age delta estimation29. They gave statistical reasoning for the cause of the association between PBA - CA 
and CA in linear regression. They also suggested removing the association through stage 2 correction of brain age 
delta, which was very similar to our RBA metric. Further, since decline in cognitive function is associated with 
brain aging30,31, we investigated the correlation between RBA and cognitive function as a proof that RBA was able 
to capture brain aging deviation from norm.

In this study, we aim to quantify how smoking, alcohol consumption, and genetic variants are associated with 
RBA. We analyzed brain-imaging data collected for 17,308 UK Biobank subjects who were cognitively normal 
and were of European ancestry. We first trained a model that produces RBA using data for 30% of the subjects. We 
then applied the trained model to the remaining 70% of the subjects (i.e., the evaluation set) and obtained RBA 
for those subjects. We further studied the association of RBA with smoking, alcohol consumption, and genetic 
variants, as well as interaction among those factors, using the evaluation set subjects.

Results
predicted brain age (pBA) and relative brain age (RBA). We randomly split the data for 17,308 sub-
jects with brain magnetic resonance imaging into training set (n = 5,193) and evaluation set (n = 12,115). Table 1 
illustrates the demographic information for the subjects included in the training and evaluation sets. There was 
no significant difference in age, gender, smoking, and alcohol consumption (Supplementary Figs. 1, 2) between 
these two sets. We trained a model that produced the predicted brain age (PBA) and relative brain age (RBA) 
based on MRI measurements using training set subjects. We then applied this trained model to the evaluation set 
subjects (i.e., the evaluation set), and further obtained PBA and RBA for the evaluation set subjects (as illustrated 
in Fig. 1). The mean absolute error (MAE) between PBA and chronological age (CA) in the evaluation set was 
3.8 years. The relationship between CA, PBA, and RBA for the evaluation set subjects is illustrated in Fig. 2 and 
Supplementary Figs. 3, 4. We carried out subsequent analyses using data of the evaluation set subjects.

cognitive function is negatively associated with RBA. Subjects who performed better in the cognitive 
tasks had a lower RBA than that of those who performed worse. As shown in Fig. 3, Fluid intelligence score was 

Number of 
subjects

Male (%) | 
Female (%)

Age (mean [SD], 
min–max)

Training data (for 
model training) 5,193 2,466 (47%) | 

2,727 (53%)
63.3 [7.4], 
46.2–80.7

Evaluation data (for 
association analyses) 12,115 5,753 (47%) | 

6,362 (53%)
63.3 [7.4], 
45.2–80.3

Table 1. Demographic information for subjects included in the training and the evaluation data sets.

Figure 1. Procedure for studying the association of relative brain age with smoking, alcohol consumption, and 
genetic variation.
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negatively associated with RBA (Spearman’s correlation = −0.07, p-value = 3E-13; R-squared = 0.005). Further, a 
lower RBA was associated with a better performance in memorizing a specific command and in memorizing the 
position of matching card pairs, and a lower response time in identifying matching cards. Detailed results on are 
shown in Supplementary Figs. 5–9.

previous tobacco smoking and alcohol consumption are significantly associated with 
RBA. Information of previous tobacco smoking frequency was collected for 11,651 of the evaluation set sub-
jects during the visit for MRI scan. Regression analyses adjusting for gender and education showed that previous 
tobacco smoking frequency was statistically significantly associated with RBA (ANOVA F-test p-value < 2E-16, 
see Fig. 4). Pairwise comparisons showed that the most significant difference was between those who smoked on 
most or all days (with an average RBA of 0.6 years) and the rest of the smoking frequency categories (i.e., those 
who abstained from smoking, just tried once or twice, or occasionally), while there was no significant difference 
among the groups of subjects who didn’t smoke on most or all days (Supplementary Table 1).

Information of current alcohol drinking frequency was collected for 11,600 of the evaluation set subjects 
during the visit for MRI scan. Regression analyses adjusting for gender and education showed that alcohol con-
sumption frequency was statistically significantly associated with RBA (ANOVA F-test p-value = 9E-6, see Fig. 5). 
Pairwise comparisons among groups with different alcohol consumption frequencies showed that the strongest 
difference was between the group who drank alcohol on most or all days (with an RBA of 0.4 years) and the rest 
of the alcohol drinking frequency categories (i.e., those who abstained from drinking, drank at special occasions 

Figure 2. Relationship between chronological age and the predicted brain age. Subjects with positive relative 
brain age (RBA) are labeled with blue X’s; subjects with negative RBA are labeled with red dots. The RBA of a 
specific subject is illustrated in pink color.

Figure 3. Relationship between Fluid intelligence score and relative brain age (RBA). Subjects with Fluid score 
of 0, 1, 2, and 3 (n = 28, 114, and 361, respectively) are grouped together. Subjects with Fluid score of 11, 12, and 
13 (n = 334, 111, and 17, respectively) are grouped together, so that each group has more than 200 subjects.

https://doi.org/10.1038/s41598-019-56089-4


4Scientific RepoRtS |           (2020) 10:10  | https://doi.org/10.1038/s41598-019-56089-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

only, 1~3 times a month, 1~2 times a week, or 3~4 times a week), while the difference among groups who didn’t 
drink on most or all days was insignificant (Supplementary Table 2).

Smoking and alcohol consumption amount were positively correlated and had an additive effect on RBA. 
Among the 2,327 subjects who smoked on most or all days and did not abstain from alcohol, the correlation 
between the two variables was 0.08 (p-value = 9E-5). We used a regression model with RBA as the response vari-
able and with smoking amount, alcohol consumption amount, sex, and education as predictors. According to this 
model, each additional pack-year of smoking was associated with 0.03 years of increased RBA (p-value = 2E-8); 
each additional gram of alcohol consumption per day was associated with 0.02 years of increased RBA 
(p-value = 6E-10). The R-squared value of this model was 0.032. As a comparison, a model with only smoking 
amount as predictor and adjusted for sex and education had an R-squared of 0.018. A model with only alcohol 
consumption amount as predictor and adjusted for sex and education had an R-squared of 0.015. We also built 
a regression model with an interaction term between alcohol drinking and smoking. The interaction term was 
insignificant, indicating that there was insufficient evidence to support the presence of an interaction between 
alcohol drinking and smoking in affecting RBA.

Association between single nucleotide polymorphisms and RBA. We looked for single nucleo-
tide polymorphisms (SNPs) that were associated with RBA within the evaluation set subjects. Multiple SNPs 
in a 2-Mb region on Chromosome 17 showed significant association with RBA (i.e., p-value < 5E-8). Figure 6 
is the Manhattan plot showing association p-value between SNPs and relative brain age across the genome. 

Figure 4. Relationship between previous tobacco smoking frequency and relative brain age.

Figure 5. Relationship between alcohol intake frequency and relative brain age.
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Supplementary Table 3 lists the raw RBA-association p-values of 538,477 SNPs under analyses (doi: 10.5281/
zenodo.3496206). A SNP located in MAPT gene showed the most significant association with RBA (SNP ID: 
Affx-13929237, p-value = 6E-9; see Supplementary Figs. 11, 12). We further built regression model to check if 
there was interaction between this SNP and smoking or alcohol consumption amount in association with RBA. 
The interaction term appeared to be insignificant in the model.

We also investigated the association between the dosage of APOE ɛ4 risk allele, a major Alzheimer’s disease 
risk factor, and RBA. We found that subjects with two copies of APOE ɛ4 risk alleles had slightly higher RBA than 
subjects with zero or one copy of risk allele (Supplementary Fig. 13). However, the association between APOE risk 
allele dosage and RBA was only nominally significant (p-value = 0.03) and didn’t reach significance threshold of 
genome-wide association studies.

Discussion
Here we analyzed the brain imaging data collected for 17,308 UK Biobank subjects. We derived RBA metric using 
training set subjects, and further investigated the association of RBA with smoking, alcohol intake, and genetic 
variants using evaluation set subjects.

In our analyses, we first calculated PBA of a subject based on structural MRI data and then derived RBA, a 
metric that describes a subject’s PBA relative to peers. RBA was calculated as the difference between PBA and 
EPBA (i.e., RBA = PBA − EPBA; see the methods section for details) of a person. As a comparison, in other 
studies where PBA was derived based on regression model, the difference between PBA and CA (PBA − CA, or 
BrainAGE) was used to indicate the brain aging status23,25,26. We observed that due to regression dilution, older 
subjects tend to have negative values of PBA − CA, while younger subjects tend to have positive values of PBA - 
CA (Fig. 1 and Supplementary Fig. 3). As a comparison, RBA was independent of CA. At all age ranges, roughly 
half of the subjects had positive RBA and half of the subjects had negative RBA (Fig. 1 and Supplementary Fig. 4). 
Therefore, the association analyses of RBA with lifestyle and genetic factors are not affected by chronological age.

We showed that subjects with positive RBA performed worse in various cognitive functions while subjects 
with negative RBA performed better. A relevant study reported that the biological brain aging accelerated in 
patients with cognitive impairment than in normal subjects27. Our findings further demonstrated that even 
among cognitively normal subjects, there was association between advanced brain age and declined cognitive 
function. We noticed that while the correlation between Fluid intelligence score and RBA was statistically sig-
nificant, it was not strong. That is due to three main reasons. First, although aging is associated with declined 
cognitive function including Fluid intelligence, there are a lot of noises in this association (please also refer to our 
response to reviewer’s 4th question). For example, researchers using UK Biobank have reported that there was 
a weak association between chronological age and Fluid intelligence score32. Second, RBA is independent of the 
chronological age. Therefore, although we expect that subjects with positive RBA to have worse cognitive function 
and subjects with negative RBA to have better cognitive function, we also acknowledge that subjects with the 
same RBA have a wide range of chronological age, causing large variation of Fluid intelligence score. Therefore, 
it is expected that RBA had a weak, yet significant, correlation with cognitive function. Third, subjects included 
in our analyses are cognitively normal. The association between RBA and cognitive function might be relatively 
weaker within these cognitively normal subjects as compared to a study in which subjects range from cognitively 
normal, mildly cognitive impaired, and severely cognitively impaired.

Our analyses of smoking and RBA indicated that subjects who had smoked on most or all days had a sig-
nificantly higher RBA compared to subjects who smoked less often. That was consistent with previous studies, 
which showed significantly greater rate of atrophy in certain regions of the brains of smokers5–7. Our data also 
showed insignificant difference of RBA among the subjects who smoked occasionally, only tried once or twice, 
or abstained from smoking. This suggests that the detrimental effect of smoking on brain aging occurs mainly 
among those who smoked on most days.

Our analyses of alcohol intake frequency and RBA indicated that subjects who drank daily or almost daily 
had a significantly higher RBA compared to those who drank less frequently. Our finding was consistent with 
previous studies, which showed that heavy alcohol consumption was detrimental to the brain8,9,33. We did not 
find significant RBA difference among subjects who drank alcohol less frequently or those who abstain from 
drinking. It has been reported that a small dose of alcohol is associated with a reduced risk of cardiovascular 
disease, coronary heart disease and stroke34–36. Moreover, cardiovascular health and brain health are related. 
Researchers have found that cardiovascular risk factors like hypertension and heart disease are associated with 
increased brain white matter abnormalities and brain atrophy12,37. Therefore, a small amount of alcohol may 
have certain beneficial to brain health through contributing to the cardiovascular health. Gu et al., have reported 

Figure 6. Manhattan plot for the association p-values between genetic variants and relative brain age across 
the genome. The red line indicates the genome-wide significant threshold on p-value (i.e., 5E-8). The blue line 
indicates p-value of 0.05.
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that light-to-moderate total alcohol intake was associated with larger total brain volume in elderly subjects38. 
Nevertheless, our results didn’t show RBA difference among subjects who drank alcohol less frequently or those 
who abstain from drinking. We also acknowledge that our observation would need to be further validated using 
an independent data set.

We also found genome-wide significant association between SNPs within a 2 Mb locus on chromosome 17 and 
RBA. The SNP showing the most significant association is located in MAPT gene. Previous studies also showed 
that mutations in MAPT, which encodes tau protein, are associated with dementia and Parkinson’s disease39. 
Therefore, although the SNPs showing genome-wide significant association with RBA are located in a locus that 
covers multiple genes, it is likely that MAPT gene is a functional gene for brain aging. Further wet lab experiment 
focusing on MAPT gene and its regulatory region may be carried out to understand the etiology of brain aging. 
On the other hand, in previous studies, researchers have identified SNPs that showed genome-wide significant 
association with specific brain morphometrics. For example, SNP rs7294919 (candidate gene TESC) was associ-
ated with hippocampal volume; SNP rs945270 (candidate gene KTN1) was associated with putamen volume; SNP 
rs10784502 (candidate gene HMGA2) was associated with intracranial volume40,41. It is possible that since brain 
age was a summary statistic of the morphometrics of multiple brain regions, the associations between SNPs and 
specific brain regions did not get reflected. Although we only found SNPs on the 2 Mb chromosome 17 loci show-
ing genome wide significant association with RBA, the SNP-level RBA association p-values can be used for future 
meta-analyses, where results from multiple genetic association studies are combined for identifying potentially 
more significant SNP-phenotype associations.

Several studies had been done previously to inspect the association between APOE ɛ4 risk allele, a major 
genetic risk factor for Alzheimer’s disease (AD)42,43, and brain age. Cole et al.15 looked at the association between 
APOE ɛ4 status and brain-predicted age difference (PAD) in 669 elderly subjects and reported no association 
between these two variables. Another study of 30 individuals with Down syndrome reported that APOE genotype 
did not significantly influence brain-PAD16. Lowe et al.17 reported that APOE ε4 status did not have significant 
association with Brain Age Gap Estimation (BrainAGE) in healthy subjects, patients with AD or mild cognitive 
impairment. However, they did observe association between BrainAGE changing rates and APOE ε4 carrier 
status. In our analyses, we found that subjects with two copies of APOE risk alleles had slightly higher RBA than 
subjects with no risk allele or only one copy of risk allele, although the effect was not statistically significant. 
Therefore, the effect of APOE risk allele on brain aging is probably not strong within cognitively normal subjects.

Our study has some limitations. First, we used a linear regression model with LASSO to produce PBA based 
on structural MRI data. More sophisticated statistical approaches such as using principal component analyses 
for dimension reduction before LASSO regression, or using neural networks may help to improve the accuracy 
of PBA. Also, the combination of structural MRI and other types of brain imaging data (e.g., functional MRI, 
diffusion-weighted MRI) may help to improve the accuracy of PBA. A more accurate PBA would allow better esti-
mation of RBA. Second, in our study, we investigated the association of brain age with tobacco smoking and alco-
hol consumption. Besides smoking and alcohol consumption, various environmental factors may be associated 
with brain age. For example, physical exercise and meditation had been reported to be associated with lower brain 
aging level44,45. Further, genetics also affects brain aging14. Therefore, the variation of RBA that can be explained 
by smoking and alcohol drinking amount was small (as reflected by the small R-squared in the regression model 
for quantifying the association of RBA with smoking and alcohol drinking amount). More studies can be done 
to help fully understand the factors associated with brain age. Third, we chose to use pack-years and grams of 
alcohol intake per day for assessing the smoking and drinking amount. There are alternative measurements for 
assessing smoking and drinking amount, which may yield slightly different findings46,47. Fourth, it is possible that 
more genetic variants that have strong effect on RBA do exist. However, these genetic variants may be missing 
from the current genotyping platform and are not detected through current analyses. Fifth, genetic predispo-
sitions are known to affect smoking and alcohol drinking behavior. For example, SNPs located in the region of 
alcohol‐metabolizing enzyme genes are significantly associated with alcohol dependence48. A SNP located in the 
nicotinic receptor gene is significantly associated with number of cigarettes smoked per day49. Therefore, it is pos-
sible that genetic variants affect alcohol and nicotine consumption and indirectly affect the RBA. Sixth, a larger 
sample size would increase the power for identifying factors and interaction among them that are significantly 
associated with a specific trait. With increased number of UK Biobank subjects for whom brain-imaging data are 
available, a future study may reveal more about factors associated with brain aging.

In sum, we studied the association of brain age with smoking, alcohol consumption, and genetic variants using 
the data collected for 17,308 cognitively normal UK Biobank subjects. These results provided useful insights 
into how brain aging is associated with smoking and alcohol consumption. Our analyses only identified genetic 
variants within a 2 Mb locus on chromosome 17 to be significantly associated with brain aging. Further studies 
potentially with even larger sample sizes will be needed to provide a clearer picture of factors associated with 
brain aging.

Materials and Methods
overview of UK biobank project. The UK Biobank recruited ~500,000 subjects in the United Kingdom50. 
The participants have provided blood, urine and saliva samples. All participants have been genotyped. 20,000 
participants scanned as of August 2018 were included in our study (including brain, heart, abdomen, bones and 
carotid artery). All participants had provided informed consent. The present analyses were conducted under data 
application number 25641.

Magnetic resonance imaging (MRi) data. Details of the structural brain MRI data, such as imaging 
hardware and acquisition protocols, are described elsewhere51,52. In our analyses, quality controlled structural 
MRI data was obtained for 21,345 subjects. We excluded 1,222 (5.7%) subjects with brain and nervous system 
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related illness, including cognitive impairment, neurological disorders or stroke, etc. (see Supplementary Table 4 
for the list of diseases based on which subjects were excluded from our analyses). We further excluded 2,815 
(13.2%) subjects with non-European ancestry (according to both self-reported ethnicity and principal compo-
nent analyses on the genetic data). Brain imaging data of 17,308 subjects were used in our analyses. The age range 
of these participants is between 45.2 years and 80.7 years.

Brain morphometrics, including volume of cortical, subcortical and white matter regions, thickness and sur-
face area of cortical regions, ventricle size, intracranial volume, etc., were obtained with FreeSurfer 6.053 based 
on the T1 MRI brain scans, with the Desikan-Killiany atlas. FreeSurfer is documented and freely available for 
download online (http://surfer.nmr.mgh.harvard.edu/). Supplementary Table 5 lists the 403 brain morphometric 
measurements used in our analyses.

cognitive function. We used the data of cognitive function in its original form, which was collected dur-
ing the visit for MRI scan. All subjects performed specific tasks as instructed by a computer. To be specific, the 
Fluid intelligence score indicates the capacity to solve problems that require logic and reasoning ability. It was 
based on subjects’ performance in identifying the largest number, calculating family relationship, interpolat-
ing word, etc. For the prospective memory task, subjects were asked to memorize a command in the middle of 
the cognitive tests and perform it at the end of the test. In the reaction time test, subjects were asked to press a 
snap-button when two cards displayed on the computer screen matched. Mean time to correctly identify matches 
was recorded. In the pairs matching test, subjects were asked to memorize the position of matching pairs of cards. 
The number of correct pairs identified was recorded. More details of the tasks for assessing cognitive function can 
be found on the UK Biobank website (http://www.ukbiobank.ac.uk/).

education. We used the information of education qualification collected during the visit for MRI scan. The 
qualification variable has multiple categories based on a British system. We collapsed it into two categories indi-
cating whether or not a subject held a college or university degree, as used in the paper by Cox et al.54. There was a 
significant association between education and RBA (p-value = 0.009, Supplementary Fig. 10). Therefore, we also 
adjusted for education when assessing the association of RBA with smoking, alcohol consumption, and genetic 
variants.

tobacco smoking history and alcohol intake. We used the information of smoking history and alcohol 
intake status that was collected during the visit for MRI scan. The smoking and alcohol intake frequency catego-
ries used in our analyses were as reported in the UK Biobank questionnaire. The smoking pack-years was defined 
as the number of cigarettes smoked per day/20 multiplied by the number of years of smoking. The alcohol intake 
amount was calculated as described in the paper by Piumatti et al.36. Alcohol consumption per day for a specific 
type of drink was calculated as the number of drinks consumed per day multiplied by the number of grams of 
alcohol contained in one drink. The total amount of alcohol consumption per day was the summation of the 
alcohol amount from all types of drinks. More details can be found on the UK Biobank website (http://www.
ukbiobank.ac.uk/).

Genotype data. Details of the genotyping and genotype calling procedures are described elsewhere55. 
Quality-controlled genotype data was obtained for 538,477 autosomal SNPs genotyped for 11,900 evaluation set 
subjects. Our quality control on SNPs ensured that all SNPs had missing rate less than 0.02 and passed 
Hardy-Weinberg exact test (i.e., Hardy-Weinberg equilibrium p-value >= 1E-6). Quality control on the samples 
ensured that all subjects had genotyping rate greater than 0.98 and had heterozygosity rate within ±3 standard 
deviation, had matched reported gender and genetic gender, and were of European ancestry (according to both 
self-reported ethnicity and genetic ethnicity based on principal component analyses). Related individuals (i.e., 
kinship coefficient >0.1) were further removed.

obtaining predicted brain age (pBA) and relative brain age (pBA) based on structural MRi 
data. Predicted brain age (PBA) is a metric describing how old a person’s brain appears based on a brain scan 
at a single time-point. Relative brain age (RBA) is a metric indicating if a person’s brain has experienced acceler-
ated or decelerated aging compared to peers. It captures the deviation of a person’s brain structural aging from 
the population’s normal pace.

We trained a model for obtaining PBA and RBA based on MRI data using training set subjects. To be specific, 
we randomly split the brain imaging data of 17,308 subjects into training and evaluation sets. Our rationale for 
picking 30% (5,193) of the subjects as the training set and the remaining 70% (12,115) as the evaluation set was to 
balance the need for accurately training a model to predict brain age and the need for a large number of subjects 
in the evaluation set for evaluating the association of RBA and the factors of interest.

The model for obtaining PBA and RBA is trained as follows. We first trained a model obtaining predicted 
brain age (PBA) based on MRI data using data of the training set subjects. To be specific, we built a linear regres-
sion model with Lasso regularization for predicting brain age using R package glmnet56,57. In the model, the 
chronological age was the response variable, and 403 brain quantitative measures derived using Freesurfer were 
used as predictors. During model training, the Lasso parameter, lambda, was selected based on an internal 
cross validation using glmnet. We did not do any pre-selection on the predictors, since the training set sample 
size was sufficiently large relative to the number of predictors in the model. The mean absolute error (MAE) 
between PBA and chronological age in the training set was 3.5 years. We observed that due to regression dilu-
tion28, the difference between PBA and CA (i.e., PBA - CA) was negatively associated with CA. The older subjects 
tended to have negative PBA − CA, while the younger subjects tended to have positive PBA − CA (See Fig. 2 
and Supplementary Fig. 3). Therefore, after obtaining PBA for each subject, we further calculated RBA. RBA is 
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defined as the difference between PBA and expected PBA given a subject’s chronological age (i.e., RBA = PBA- 
Expected(PBA|CA)). Here, Expected(PBA|CA)), or EPBA, was obtained through building a regression model 
where CA was the predictor and PBA was the response variable. In that way, RBA is independent of CA. At each 
age range, there were roughly half of the subjects with positive RBA and half of the subjects with negative RBA 
(Fig. 1, Supplementary Fig. 4). A subject with positive RBA has a brain that appears older than those of peers, 
while a subject with negative RBA has a brain that appears younger. Since we linear operations were used to derive 
RBA based on PBA and CA, the unit of RBA is year.

After training the model for obtaining PBA and RBA using the training set data, we applied it to the evaluation 
set and carried on association analyses.

Quantifying the association of RBA with previous tobacco smoking amount and alcohol intake 
amount. We quantified the association between previous tobacco smoking amount, alcohol intake amount, 
and RBA using a two-step regression model adjusting for gender and education. We first built a linear regression 
model using data of 2,327 evaluation set subjects who previous smoked daily or almost daily and did not abstain 
from drinking alcohol. We then identified subjects with large Cook’s distance as potential influential observations 
(i.e., subjects with Cook’s distance greater than 3* the mean Cook’s distance of all the subjects). We excluded 
these influential observations, fitted a second linear regression model, and reported results based on the second 
regression model. In total, data of 2,174 non-influential observations were used in the second-step regression.

testing the association between genetic variants and RBA. We used PLINK58 linear regression 
model for genotypic test, adjusting for gender, education, and first five genetic principal components of ancestry, 
to test the association between SNPs and RBA.
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